| 1. | D          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | [1] |
|----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|
| 2. | С          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | [1] |
| 3. | В          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | [1] |
| 4. | В          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | [1] |
| 5. | (a)<br>(b) | <ul> <li>Use of sensor</li> <li>Event happens very quickly OR cannot take readings fast enough (1)<br/>Sampling rate: 50+ samples per second (1)</li> <li>Initially the temperature is low so current is high<br/>Resistance of filament increases as temperature increases<br/>Current falls to steady value when temperature is constant<br/>Maximum heating is when lamp is switched on / when current is highest<br/>Filament breaks due to melting caused by temperature rise</li> </ul> | 2<br>Max 4 | [6] |
| 6. |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |     |

7. (a) Voltmeter is across resistor should be across cell (1)

| (i)                                                   | <b>Plot of graph</b><br>Check any three points (award mark if these are correct) (3)<br>Line of best fit                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)                                                  | e.m.f. = [1.36 - 1.44 V] (1)                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (iii)                                                 | Attempt to find gradient (1)<br>Answer $[0.38 - 0.42 \Omega]$ (1)                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (b)(i<br>Grad                                         | i)) iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dioc                                                  | le or LED (1)                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (i)                                                   | Use of R = V / I current between 75 and 90 ignoring powers of 10 (1)<br>answer 6.7 – 8.0 $\Omega$ (1)<br>Example of answer<br>R = 0.60 V ÷ (85 × 10 <sup>-3</sup> ) A<br>R = 7.06 $\Omega$                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (ii)                                                  | Infinite OR <u>very</u> high OR $\infty$                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rect<br>Prev<br>Stab<br>To p<br>A na<br>calcu<br>A vo | ification / AC to DC / DC supply [not DC appliances]<br>enting earth leakage<br>ilising power output<br>rotect components<br>.med use of LED if linked to LED as component in (a)(eg<br>ilator display / torch)<br>oltage controlled switch | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                       | <ul> <li>(ii)</li> <li>(iii)</li> <li>Inter<br/>(b)(i)</li> <li>Grad<br/>(b)(i)</li> <li>Diod</li> <li>(ii)</li> <li>(ii)</li> <li>(iii)</li> <li>ANY<br/>Rect<br/>Prev<br/>Stab<br/>To p<br/>A national<br/>Calculation</li> </ul>         | <ul> <li>Check any three points (award mark if these are correct) (3)<br/>Line of best fit</li> <li>(ii) e.m.f. = [1.36 - 1.44 V] (1)</li> <li>(iii) Attempt to find gradient (1)<br/>Answer [0.38 - 0.42 Ω] (1)</li> <li>Intercept would twice value above (1) (accept numerical value 2× value (b)(ii))</li> <li>Gradient would be twice value above (1) (accept numerical value 2× value (b)(iii))</li> <li>Diode or LED (1)</li> <li>(i) Use of R = V / I current between 75 and 90 ignoring powers of 10 (1)<br/>answer 6.7 - 8.0 Ω (1)<br/>Example of answer<br/>R = 0.60 V ÷ (85 × 10<sup>-3</sup>) A<br/>R = 7.06 Ω</li> </ul> | Check any hree points (award mark if these are correct) (3)<br>Line of best fit3(ii) e.m.f. = $[1.36 - 1.44 V]$ (1)1(iii) Attempt to find gradient (1)<br>Answer $[0.38 - 0.42 \Omega]$ (1)2Intercept would twice value above (1) (accept numerical value 2× value<br>(b)(ii))2Intercept would be twice value above (1) (accept numerical value 2× value<br>(b)(iii))2Gradient would be twice value above (1) (accept numerical value 2× value<br>(b)(iii))2Diode or LED (1)1(i) Use of R = V / I current between 75 and 90 ignoring powers of 10 (1)<br>answer $6.7 - 8.0 \Omega$ (1)<br>Example of answer<br>R = $0.60 V \div (85 \times 10^{-3}) A$<br>R = $7.06 \Omega$ 2(ii) Infinite OR very high OR $\infty$ 1 <b>ANY ONE</b><br>Preventing earth leakage<br>Stabilising power output<br>To protect components<br>A named use of LED if linked to LED as component in (a)(eg<br>calculator display / torch)<br>A voltage controlled switch |

8.

9. (a) <u>Resistivity definition</u>

Resistivity = resistance  $\times$  (1)  $\times$  <u>cross sectional</u> area / length (1)

 $\rho = RA/l$  with symbols defined scores 2/2 equation as above without symbols defined scores  $\frac{1}{2}$ equation given as  $R = \rho l/A$  with symbols defined scores 1/2

(1st mark is for linking resistivity to resistance with some other terms)

(b) (i) Resistance calculation Converts kW to W (1) Use of P = V2/R OR P = VI and V = IR (1) Resistance = 53  $\Omega$  (1)

### Example of answer $R = (230 \text{ V})^2 \div 1000 \text{ W}$ $R = 53 \Omega$

(ii) Length calculation Recall  $R = \rho l/A$  (1) Correct substitution of values (1) Length = 6.3 m (accept 6.2 m) (1) ecf value of R

### **Example of answer**

 $l = (52.9 \ \Omega \times 1.3 \times 10^{-7} \ m^2) \div (1.1 \times 10^{-6} \ \Omega \ m)$   $l = 6.3 \ m$ 

### (iii) **Proportion method**

Identifies a smaller diameter is needed (1) Diameter = 0.29 mm (1) OR Calculation method Use of formula with l = half their value in (b)(ii) (1) Diameter = 0.29 mm (1) (Ecf a wrong formula from part ii for full credit)

### Example of answer

 $d_{new} = 0.41 \text{ mm} \div \sqrt{2}$  $d_{new} = 0.29 \text{ mm}$ 

[10]

2

3

3

| 10. | (a) | Ener<br>Per u<br>[wor<br>given<br>OR<br>E = V<br>Sym<br>defin<br>(E = | nition of E.M.F.<br>rgy (conversion) or work done (1)<br>unit charge (1)<br>tk done/coulomb 1/2, energy given to a charge 1/2, energy<br>n to a charge of a coulomb 2/2]<br>W/Q (1) $E = P/Ibols defined (1) Symbolsned1 J/C scores 1) (E = 1 W/A scores 1)rminal) potential difference when no current is drawn 1/2)$                                                                                                               | 2 |
|-----|-----|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | (b) | (i)                                                                   | Internal resistance calculation<br>Attempt to find current (1)<br>Pd across $r = 0.2 V$ (1)<br>$r = 0.36 (\Omega)$ (1)<br>[You must follow through the working, I have seen incorrect<br>methods getting 0.36 $\Omega$ ]<br>Example of answer<br>$I = 2.8 V \div 5.0 \Omega$                                                                                                                                                         | 2 |
|     |     | (ii)                                                                  | $r = (3.0 - 2.8) V \div 0.56 A = 0.36 \Omega$ $\frac{\text{Combined resistance}}{\text{Use of parallel resistor formula (1)}}$ Resistance = 3.3 $\Omega$ [accept 3 1/3 but not 10/3] (1)                                                                                                                                                                                                                                             | 3 |
|     |     | (iii)                                                                 | Voltmeter reading<br>(ecf bii)<br>Current calculation using 3 V with either 3.3 $\Omega$ or 3.7 $\Omega$ (1)<br>Total resistance = 3.7 $\Omega$ [accept 3.66 to 3.73 $\Omega$ ]<br>OR use of $V = E - Ir$ (1)<br>Voltmeter reading = 2.7 V (1)<br><b>OR</b><br>Potential divider method, ratio of resistors with 3.7 $\Omega$ on bottom (1)<br>Multiplied by 3.0 V (1)<br>2.7 V (1)<br>Example of answer<br>$R_{total} = 3.7 \Omega$ |   |
|     |     |                                                                       | $I = 3 \text{ V} \div 3.7 \Omega = 0.81 \text{ A}$ $V_{\text{voltmeter}} = 3.3 \Omega \times 0.81 \text{ A} = 2.7 \text{ V}$                                                                                                                                                                                                                                                                                                         | 3 |

|     | (c) | <u>Ideal voltmeter</u><br>Ideal voltmeter has infinite resistance OR extremely high resistance<br>OR highest possible R OR <u>much</u> larger resistance than that of<br>component it is connected across OR quotes value > 1 M $\Omega$ (1)                                                                       |   |      |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|
|     |     | Current through voltmeter is zero (negligible) OR doesn't reduce the resistance of the circuit OR doesn't reduce the p.d. it is meant to be measuring. (1)                                                                                                                                                         | 2 | [12] |
| 11. | (a) | <u>Circuit diagram</u><br>Potentiometer correctly connected i.e potential divider circuit (1)<br>Ammeter in series and voltmeter in parallel with bulb (1)                                                                                                                                                         |   |      |
|     |     | (light bulb in series with resistance can score second mark only)                                                                                                                                                                                                                                                  | 2 |      |
|     | (b) | <ul> <li>(i) <u>Graph</u></li> <li>+I, +V quadrant; curve through origin with decreasing gradient (1)</li> <li>[do not give this mark if curve becomes flat and then starts going down i.e. it has a hook]</li> </ul>                                                                                              |   |      |
|     |     | -I, $-V$ quadrant reasonably accurate rotation of $+I$ , $+V$ quadrant (1)                                                                                                                                                                                                                                         | 2 |      |
|     |     | <ul> <li>(ii) <u>Shape of graph</u><br/>As current/voltage increases, temperature of the lamp increases /<br/>lamp heats up (1)<br/>Leading to increase in resistance of lamp (1)<br/>Rate of increase in current decreases OR equal increases in V<br/>lead to smaller increases in I (1)<br/>Qowc (1)</li> </ul> |   |      |
|     |     | Ecf if a straight line graph is drawn max 3<br>R constant (1)<br>V $\alpha$ I (1)<br>Qowc (1)                                                                                                                                                                                                                      | 4 | [8]  |

12. (a) Calculation of adaptor's input Recall of: power = IV (1) Correct answer [0.01 A] (1) Example of calculation: power = IVI = P/V = 25 W / 230 V = 0.01 A

| Explain why VA is a unit of power<br>Power = voltage $\times$ current so unit = volt $\times$ amp (1)                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calculation of efficiency of adaptor<br>Use of efficiency equation (1)<br>Correct answer [24%] (1)<br>Example of calculation:<br>efficiency = $(0.6 \text{ VA} / 2.5 \text{ W}) \times 100\%$<br>= 24 % [0.24]                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reason for efficiency less than 100%<br>Resistance (accept explanations beyond spec, e.g. eddy currents) (1)<br><u>hence</u> heat loss to surroundings (1)                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calculation of charge<br>Recall of: $Q = It$ (1)<br>Correct answer [4000 C] (1)<br>Example of calculation:<br>Q = It<br>$= 0.2 \text{ A} \times 6 \text{ h}$<br>$= 0.2 \text{ A} \times (6 \times 60 \times 60) \text{ s}$<br>= 4000  C (4320  C)                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calculation of work done<br>Recall of: $W = QV$ OR Recall of $W = Pt$ (1)<br>Correct substitution (1)<br>Correct answer [13 000 J] (1)<br>Example of calculation:<br>W = QV<br>$W = 4320 \text{ C} \times 3 \text{ V} [\text{ecf}]$<br>= 13 000  J (12 960  J)<br>OR<br>W = Pt<br>$W = 0.6 \text{ W} \times 6 \text{ h}$<br>$W = 0.6 \text{ W} \times (6 \times 60 \times 60) \text{ s}$<br>= 13 000  J | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                         | Power = voltage × current so unit = volt × amp (1)<br>Calculation of efficiency of adaptor<br>Use of efficiency equation (1)<br>Correct answer [24%] (1)<br>Example of calculation:<br>efficiency = $(0.6 \text{ VA} / 2.5 \text{ W}) \times 100\%$<br>= 24 % [0.24]<br>Reason for efficiency less than 100%<br>Resistance (accept explanations beyond spec, e.g. eddy currents) (1)<br><u>hence</u> heat loss to surroundings (1)<br>Calculation of charge<br>Recall of: $Q = lt$ (1)<br>Correct answer [4000 C] (1)<br>Example of calculation:<br>Q = It<br>= 0.2 A × 6 h<br>= 0.2 A × (6 × 60 × 60) s<br>= 4000 C (4320 C)<br>Calculation of work done<br>Recall of: $W = QV$ OR Recall of $W = Pt$ (1)<br>Correct substitution (1)<br>Correct answer [13 000 J] (1)<br>Example of calculation:<br>W = QY<br>$W = 4320 \text{ C} \times 3 \text{ V [ccf]}$<br>= 13 000 J (12 960 J)<br>OR<br>W = Pt<br>$W = 0.6 \text{ W} \times 6 \text{ h}$<br>$W = 0.6 \text{ W} \times 6 \text{ h}$<br>$W = 0.6 \text{ W} \times (6 \times 60) \text{ s}$ |

[12]

- **13.** (a) <u>Blue light:</u> Wavelength / frequency / (photon) energy
  - (b) (i) Frequency: Conversion of either value of eV to Joules Use of f = E / hCorrect frequency range  $[4.8 \times 10^{14} - 8.2 \times 10^{14} \text{ Hz or range} =$  $3.4 \times 10^{14} \text{ Hz}$ ] [no penalty for rounding errors] eg.  $2 \text{ eV} = 2 \times 1.6 \text{ x } 10 - 19 = 3.2 \times 10 - 19 \text{ J}$  $= 6.63 \times 10^{-34} \times f$  $f = 4.8 \times 10^{14} Hz$  $3.4 \text{ eV} = 3.4 \times 1.6 \times 10^{-19} = 5.4 \times 10^{-19} \text{ J}$  $f = 8.2 \times 10^{14} Hz$ 3 (ii) Diagrams: Downward arrow from top to bottom level 2 On larger energy gap diagram (c) (i) Resistivity drop: Less heating / less energy lost / greater efficiency / lower voltage needed / less power lost 1 Resistance: (ii) Recall of  $R = \rho L/A$ Use of  $R = \rho L/A$ Correct answer  $[80(\Omega)]$  [allow 80–84 ( $\Omega$ ) for rounding errors] Eg.  $R = (2 \times 10^{-2} \times 5.0 \times 10^{-3}) / (3.0 \times 10^{-3} \times 4.0 \times 10^{-4})$

[10]

3

2

1

14. (a) *n* is (number of) charge carriers per unit volume or number density or (number of) charge carriers m<sup>-3</sup> or charge carrier density(1)
[allow electrons]
v is drift speed or average velocity or drift velocity (of the charge carriers) (1)
[just speed or velocity scores zero]

 $= 83 \Omega$ 

|     | (b) | $n \text{ m}^-$<br>$A \text{ m}^2$ | and $Q$ A s or / Cs <sup>-1</sup> and $Q$ C (1)<br><sup>3</sup> (1)<br><sup>2</sup> and $v$ m s <sup>-1</sup> (1)<br>o equation written assume order is that of equation] | 3 |     |
|-----|-----|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|     | (c) | (i)                                | $n \ l$ and $Q$ Need all three                                                                                                                                            | 1 |     |
|     |     | (i)                                | Ratio $v_A / v_B$ less than 1 following sensible calculation (1)<br>Ratio = $\frac{1}{4} / 0.25 / 1:4$ (1)<br>(ratio 4:1 scores 1)<br>[ $4v_A:1v_B$ scores 1]             | 2 | [8] |
|     |     |                                    |                                                                                                                                                                           |   |     |
| 15. | (a) |                                    | of $P = IV(1)$<br>ent in lamp A – 2 A (1)                                                                                                                                 |   |     |
|     |     | [0.5                               | A scores zero unless $24 = I \times 12$ seen for $1^{st}$ mark]                                                                                                           | 2 |     |
|     |     |                                    | nple of answer<br>$P \div V = 24 \text{ W} \div 12 \text{V}$<br>A                                                                                                         |   |     |
|     | (b) | (i)                                | Voltmeter reading = $12 \text{ V} (1)$                                                                                                                                    | 1 |     |
|     |     | (ii)                               | p.d. across $R_2 = 6$ V or their (b)(i) minus 6V (1)<br>Use of $R = V/I$ (1) conditional on first mark<br>$R_2$                                                           |   |     |
|     |     |                                    | Answer to this part must be consistent with voltmeter reading and if voltmeter reading is wrong this part has a max 2. If $(b)(i) = 15$ V then need to see                |   |     |
|     |     |                                    | If $(b)(i) = 6V$ or less they are going to score zero for this section.                                                                                                   | 3 |     |
|     |     | (iii)                              | current through $R_1 = 5 A (1)$ ecf answers from (a)                                                                                                                      | 1 |     |
|     |     |                                    | Example of answer<br>Current through $R_1 = 2 A + 3 A = 5 A$                                                                                                              |   |     |
|     |     | (iv)                               | p.d. across $R_1 = 3 V (1) \text{ ecf } (15V \text{ minus their } (b)(i))$                                                                                                | 1 |     |
|     |     |                                    | Example of answer<br>p.d. across $R_1 = 15 V - 12 V = 3 V$                                                                                                                |   |     |
|     |     |                                    |                                                                                                                                                                           |   |     |

(v)  $R_1$ 

> Example of answer  $R_1=3\ V\div 5A=0.6$ [accept fraction 3/5]

> > [9]

1

| 16. | (a) | (i)   | <i>EI</i> (1) | 1 |
|-----|-----|-------|---------------|---|
|     |     | (ii)  | $I^{2}R(1)$   | 1 |
|     |     | (iii) | $I^2 r$ (1)   | 1 |

| (b) | $EI = I^2 R + I^2 r$ or $E = IR + Ir$<br>ecf Must use values (a)(i)-(iii) | 1 |
|-----|---------------------------------------------------------------------------|---|
|     |                                                                           |   |

- (c) I for circuit given by  $I_{\text{max}} = E / r$  or substitution of 5000V into the equation (1) (for safety) need I to be as small as possible (1) 3 [7]
- 17. (a) (i) Calculate maximum current

Recall of P = IV(1)Correct answer [0.49 A] (1) Example of calculation:  $P = I\tilde{V}$ I = 5.9 W / 12.0 V= 0.49 A

(ii) Show that resistance is about 24  $\Omega$ Recall of V = IR (1) Correct answer to 3 s.f.  $[24.5 \Omega]$  [no u.e.] (1) Example of calculation: R = 12 V / 0.49 A= 24.5 Ω

2

(b) (i) <u>Calculate current</u>

Use of correct circuit resistance (1) Correct answer [0.45 A] (1)

Example of calculation: I = V / R= 12 V ÷ (24.5  $\Omega$  + 2  $\Omega$ ) = 0.45 A

2

2

1

4

(ii) <u>Calculate power</u>

Recall of P = IV and V = IR (accept  $P = I^2R$ ) (1) or  $P = \frac{V^2}{R}$ 

Correct answer [5.0 W] (1)

Example of calculation:  $P = I^2 R$   $= (0.45 \text{ A})^2 \times 24.5 \Omega$ = 5.0 W

### (c) <u>Increase in power available to pump</u>

e.g. lower resistance in wire thicker wire, panel nearer to motor (1) (accept relevant answers relating to panels, e.g. more panels)

# **18.** (i) <u>J C<sup>-1</sup></u>

Potential difference (1)

- (ii) <u>Product of two quantities</u> Potential difference (1)
- (iii) <u>Rate of change</u> current (1)
- (iv) <u>Base quantity</u> current (1)

(for any part if two answers are given score is zero)

[4]

[9]

| 19. | (a) | (As temperature of thermistor increases) its resistance<br>decreases [Do not credit the converse] (1)<br>any TWO<br>(slight) decrease in $v$ (symbol, velocity or drift velocity)<br>Large increase in $n$ increases [accept electrons/charge carriers for $n$ ]<br>A, Q and (pd) remain constant (1)(1)<br>[ignore any reference to $v$ staying constant]<br>(n constant, can't score mark for 3,4) | 3 |     |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|     | (b) | (i) <b>ammeter</b> reading decreases (1)<br><b>voltmeter</b> reading unaltered (1)                                                                                                                                                                                                                                                                                                                   |   |     |
|     |     | (ii) ammeter is used to indicate temperature (1)                                                                                                                                                                                                                                                                                                                                                     |   |     |
|     |     | <ul> <li>(iii) Assumption: <u>ammeter</u>; ideal/ has zero/negligible resistance (1)<br/>(Reference to meters is zero mark)</li> </ul>                                                                                                                                                                                                                                                               | 4 | [7] |
| 20. | (a) | Tungsten filament<br>Qowc (1)                                                                                                                                                                                                                                                                                                                                                                        |   |     |
|     |     | <i>I</i> is not (directly) proportional to <i>V</i><br>Temperature of filament increases/ filament heats up/<br>gets hotter as current/pd increases<br>[accept bulb or lamp but not wire]<br>Links temperature increase to resistance increases<br>tungsten filament does not obey Ohm's law/not an<br>Ohmic conductor or resistor. (1)(1)(1)<br>Any THREE                                           | 4 |     |
|     | (b) | (i) Reading current from graph 1.5 A (1)<br>answer 5.3 $\Omega$ (1)<br>(misread current $\rightarrow 0/2$ )                                                                                                                                                                                                                                                                                          |   |     |
|     |     | Example of answer<br>V = IR<br>$R = 8.0 \div 1.5 = 5.3 \Omega$                                                                                                                                                                                                                                                                                                                                       | 2 |     |
|     |     | (ii) Addition of two currents (1)<br>OR use of $R = V/I$ and resistors in parallel formula<br>1.5 + 1.2 = 2.7 A (1)                                                                                                                                                                                                                                                                                  |   |     |
|     |     | ecf candidates' current from above<br>[If you see 2.7 A give 2marks]                                                                                                                                                                                                                                                                                                                                 | 2 | [8] |

| 21. | (a) | (i) Use of $P = V^2 / R$ OR $P = IV$ and $V = IR$ (1)<br>Total $R = 4.5 \Omega$ (1)<br>Example of answer<br>$R = V^2 \div P = 12 \text{ V} \times 12 \text{ V} \div 32 \text{ W}$<br>$R = 4.5 \Omega$                                                                                                                                              | 2 |     |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|     |     | (ii) Use of $1/R = 1/R_1 + 1/R_2$ OR $\Sigma R = 1/5R$ (1)<br>[OR find total current, divide that by 5 and use $V = IR$ ]<br>Resistance of strip = 22.5 $\Omega$ (1)<br>ecf candidates' <i>R</i> .<br>[common error is to divide by 5 $\rightarrow$ 0.9 $\Omega$ scores 0/2 but<br>ecf to next part gives $l = 0.033$ m which will then score 3/3] | 2 |     |
|     | (b) | $R = \rho l / A \text{ or correct rearrangement (1)}$<br>Correct substitution (1)<br>Length = 0.82 m (1)<br>ecf candidates' R<br><u>Example of answer</u><br>$l = RA/\rho = (22.5 \ \Omega \times 4.0 \times 10^{-8} \ \text{m}^2) \div 1.1 \times 10^{-6} \ \Omega \text{ m}$ $l = 0.82 \text{ m}$                                                | 3 |     |
|     | (c) | See $P = V^2 / R$ OR $P = IV$ leading to increase in current<br>or decrease in resistance (1)<br>more strips in <u>parallel</u> / material of lower resistivity (1)<br>[not greater conductivity]                                                                                                                                                  | 2 | [9] |
| 22. | (a) | E.M.F. = work done / charge OR energy transferred / charge (1)<br>OR power / current<br>[There is only one mark here and this is consistent with<br>specification but it must not be Joules or coulombs]                                                                                                                                           | 1 |     |
|     | (b) | (i) Use of $V = IR$ (1)<br>I = 2.0  A (1)<br>Example of answer<br>$I = V/R = 8.0 \text{ V} / 4.0 \Omega$<br>I = 2.0  A                                                                                                                                                                                                                             | 2 |     |

| (ii)  | Uses p.d. = 4.0 V (1)<br>$r = 2.0 \Omega$ ecf their I (1)<br>Example of answer<br>r = V/I = 4.0 V/2.0 A<br>$r = 2.0 \Omega$                                                                                                              | 2 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (iii) | Use of $P = VI // I^2 R // V^2 /R$ (1)<br>P = 16 W ecf their I (1)<br>Example of answer<br>P = VI = 8 V × 2 A<br>P = 16 W                                                                                                                | 2 |
| (iv)  | Uses 4V or $2A \times 2\Omega$ or their $I \times r$ (1)<br>see 5 × 60 s in an energy equation (1)<br>energy = 2400 J (1)<br>Example of answer<br>$E = VIt = 4 \text{ V} \times 2 \text{ A} \times 5 \times 60 \text{ s}$<br>E = 2400  J | 3 |

**23.** (a)

(i)

Calculate resistance Recall of R = V/I (1) Correct answer [8.65  $\Omega$ ] (1) Example of calculation: R = V/I  $R = 2.68 \text{ V} \div 0.31 \text{ A}$  $= 8.65 \Omega$ 

(ii) Show that internal resistance is about 0.4 Ω
 Recall of relevant formula [V = ε – Ir OR lost volts = (ε – V) (1) OR ε = I(R + r)] including emf

Correct answer [0.39  $\Omega$ ] [no ue] [allow ecf if  $\varepsilon = I(R + r)$ ] (1)

2

2

[10]

Example of calculation:

 $V = \varepsilon - Ir$   $r = (\varepsilon - V)/I$  = (2.8 V - 2.68 V)/0.31 A $= 0.39 \Omega$ 

|     | (iii)                  | <u>Comment on match to maximum power</u><br>Not matched [ecf for $R$ in (a) (i) and $r$ in (a)(ii)] (1)<br>Max power when internal resistance = load resistance (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 |      |
|-----|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|
| (b) | (i)                    | Show that charge is about 14 000 C<br>Recall of $Q = It$ (1)<br>Correct answer [14 400 C] [no ue] (1)<br>Example of calculation:<br>Q = It<br>$= 2 \times 2 \text{ A} \times 60 \times 60 \text{ s}$<br>= 14 400  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 |      |
|     | (ii)                   | Calculate time for which battery maintains current<br>Use of $Q = It$ OR use of $W = Pt$ (1)<br>Correct answer [46 450 s or 12.9 h] (1)<br>Example of calculation:<br>t = Q/I<br>= 14 400 C / 0.31 A<br>= 46 450 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 |      |
| (c) | Effic<br>more<br>so ef | the end of the equation $R = I^2 R / I^2 (r + R) / Efficiency depends on R / (r + R) / I^2 (r + R)$ | 2 | [12] |
| (a) | <u>Circu</u><br>Poter  | <u>uit:</u><br>ntial divider ( <b>1</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 |      |
| (b) | 4 V (<br>Exar          | y potential difference:<br>(1)<br>nple:<br>$\times 12 = 4V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 |      |

24.

| (c) | (i)   | Resistance:<br>Recall of $R = \rho L/A$ (1)<br>Correct substitution of values into formula (1)<br>Correct answer $[98(\Omega)]$ (1)<br>[allow 97 - 98 $\Omega$ to allow for rounding errors] [no u.e.]Example:<br>$R = (3.4 \times 10^2 \times 1.44) / (100 \times 0.05)$<br>$= 98 \Omega$   | 3 |      |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|
|     | (ii)  | $\frac{\text{Combined resistance:}}{\text{Use of } 1/R_{\text{Tot}} = 1/R_1 + 1/R_2 \text{ (1)}}$ $\text{Correct answer for R [4.8\Omega] (1)}$ $[\text{allow } 4.7\Omega - 4.8\Omega \text{ to allow for rounding errors]}$ $1/R = 1/98 + 1/5 \text{ (or } = 1/100 + 1/5)$ $R = 4.8 \Omega$ | 2 |      |
|     | (iii) | <u>Relay voltage:</u><br>P.d. across relay with ballast very similar to p.d across<br>the relay alone / p.d. = $3.9 \text{ V}$ / p.d. lower (slightly) (1)                                                                                                                                   | 1 |      |
|     | (iv)  | <u>Train on track:</u><br>Relay voltage becomes <b>very</b> small / zero (1)                                                                                                                                                                                                                 | 1 |      |
|     | (v)   | <ul> <li>Wet ballast:</li> <li>Any two-</li> <li>Combined resistance now small / R<sub>T</sub> = 0.45 Ω</li> <li>Relay voltage now small / V = 0.52 V</li> <li>Relay voltage too small to trigger green light / signal remains red (1)(1)</li> </ul>                                         | 2 | [11] |

#### Tungsten filament bulb 25.

(a) **Resistance** Use of  $P = V^2/R$  or P = VI with V = IR (1) answer 960  $\Omega$  (1) Example of answer  $R = (240 \text{ V} \times 240 \text{ V}) \div 60 \text{ W}$ 

$$R=960~\Omega$$

(b) Drift speed rearrangement of I = nAvQ (1) Use of  $Q = 1.6 \times 10^{-19}$  (C) (1) answer  $0.15/0.148 \text{ m s}^{-1}(1)$ 3 Example of answer  $v = 0.25 \text{ A} \div (3.4 \times 10^{28} \text{ m}^{-3} \times 1.6 \times 10^{-19} \text{ C} \times 3.1 \times 10^{-10} \text{ m}^2)$ (c) Explanation Qowc (1) Any THREE • Resistance due to collisions between electrons & ions/atoms/particles • (as T increases) ions/atoms/particles have more energy • (as T increases) ions/atoms/particles vibrate through larger amplitude /vibrate faster OR amplitude if lattice vibration increases. • more chance/increased frequency of collision/interaction OR impedes the flow of electrons (1)(1)(1)4 [9] Emf and Internal resistance 26. (a) Derivation E = I (R + r) OR E = IR + Ir (1)1 (b) Correct working (allow even if evidence of working backwards) (1) (i) Example of answer E/I = R + rRearranging R = E/I - r(ii) Emf Attempt to use gradient (1) answer 1.5 V (bald answer 1.5 V scores 0/2) (1) 2 (iii) Power From graph find value of 1/I when R = 5  $\Omega$  (1) Use of  $P = I^2 R$  (1) answer 0.31 (W) (1) 3

> Example of answer  $1/I = 4 \text{ A}^{-1} \rightarrow \text{I} = 0.25 \text{ A}$  $P = 0.25 \text{ A} \times 0.25 \text{ A} \times 5 \Omega = 0.3125 \text{ W}$

|     | (c)  | <u>Graph</u><br>Intercept at -2 (ohms) (1)<br>Graph steeper than original (1)<br>Gradient is 3.0 V i.e. line passes through [10, 27-29] [no ecf] (1)                                          | 3 | [10] |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|
| 27. | Pote | ntial divider                                                                                                                                                                                 |   |      |
|     | (a)  | <u>First circuit</u><br>Middle terminal M<br>Outer terminals L and K (any order) (1)                                                                                                          | 1 |      |
|     | (b)  | (i) <u>P.d across lamp.</u><br>External resistance in circuit is 25 or (20+5) ohms (1)<br>See ratio of resistances (denominator larger) $\times$ 6.0V (1)<br>OR current = 6/25 A              |   |      |
|     |      | answer 4.8 V (1)                                                                                                                                                                              | 3 |      |
|     |      | (ii) <u>Assumption</u><br>The resistance of the ammeter is zero/negligible. (1)                                                                                                               | 1 |      |
|     | (c)  | Second circuit<br>See 2 resistors in parallel with supply (1)<br>Supply across ends of variable resistor (10 $\Omega$ ) (1)<br>Fixed resistor across one end and slider (consequent mark) (1) | 3 | [8]  |
| 28. | (a)  | Circuit diagram and explanation                                                                                                                                                               |   |      |
|     |      | ammeter and voltmeter shown in series and parallel respectively (1) current measured with ammeter and voltage / p.d. with voltmeter (1)                                                       | 2 |      |
|     | (b)  | <u>Calculation of resistance</u><br>Recall of $R = V/I$ (1)                                                                                                                                   | 2 |      |
|     |      | Correct answer [25.0 Ω] (1)<br>Example of calculation:                                                                                                                                        | 2 |      |
|     |      | R = V/I                                                                                                                                                                                       |   |      |
|     |      | $R = 3.00 \text{ V} \div 0.12 \text{ A}$                                                                                                                                                      |   |      |
|     |      | $=25.0 \ \Omega$                                                                                                                                                                              |   |      |
|     |      |                                                                                                                                                                                               |   |      |

(c) <u>Calculation of resistance</u>

Recall of  $P = V^2/R$  (1) Correct answer [29.4  $\Omega$ ] (1) Example of calculation:  $P = V^2/R$  $R = (230 \text{ V})^2 \div 1800 \text{ W}$  $R = 29.4 \Omega$ [Accept calculation of I = 7.8 A (1), calculation of  $R = 29.4 \Omega$  (1)]

(d) <u>Explanation of difference in values of resistance</u>

At higher voltage value element is at a higher temperature (1) (resistance higher because) increased lattice ion vibrations impede charge flow (more) (1)

[8]

2

### (b) (i) <u>Choice of material:</u>

Any 2 of the following:

- (almost) all of the voltage is dropped across the carbon rod
- gives the greatest speed variation
- others need to be longer (to have same resistance as carbon)
- others need to be thinner (to have same resistance as carbon) (1)(1)
   Max 2

### (ii) <u>Resistance calculation:</u> Use of $R = \rho L/A$ (1) Correct units used for all terms [all in **cm** or all in **m**] (1) Correct answer [1.9 $\Omega$ ] (1) 3 [allow 1.8 $\Omega$ for rounding errors – no u.e] eg. $R = 1.4 \times 10^{-5} \times 0.4 / 3.0 \times 10^{-6}$ $= 1.9 \Omega$

(iii) Available voltage:  
$$X - 12 V$$
 Y - 0 V (1)

(iv) Effect of connecting wires: Less voltage available for train set as some wasted across wires (1)  $0.5 \Omega$  is (relatively) large % of total resistance, so effect is high / not negligible (1)

or

Calculation of potential difference available now (1) [9.5 V] [allow 9.5 – 9.6 V] Significant drop from 12 V (1)  $V_{xy} = (R_{xy} / R_{Total}) \times V_{supply} = (1.9 / (1.9 + 0.5)) \times 12 = 9.5 V$  2

[9]

**31.** (a) (i) Potential difference = work (done)/(unit) charge OR Potential difference = Power/current (1)

1

1

|     |     | (ii) $J = kg m^2 s - (I)$<br>$C = A s \text{ or } W = J s^1 (1)$<br>$V = kg m^2 A^{-1} s^{-3} (1)$                                                                                                                                                                                                       | 3 |     |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|     | (b) | Converts 2 minutes to 120 seconds (1)<br>Multiplication of VI $\Delta$ t or V $\Delta$ Q (1)<br>Energy = 1440 J (1)                                                                                                                                                                                      | 3 |     |
|     |     | Example of answer:<br>Energy = $6.0 \text{ V} \times 2.0 \text{ A} \times 120 \text{ s}$<br>= 1440 J                                                                                                                                                                                                     |   | [7] |
| 32. | (a) | n = number of charge carriers per unit volume <b>OR</b> $n =$ number of charge carriers m <sup>-3</sup> <b>OR</b> $n =$ charge carrier density (1)                                                                                                                                                       |   |     |
|     |     | v = drift speed/average velocity/drift velocity (of the charge carriers) (1)                                                                                                                                                                                                                             | 2 |     |
|     | (b) | <i>n</i> is greater in conductors / <i>n</i> less in insulators. (1)<br>[There must be some comparison]<br>larger current flows in a conductor. Dependant on having<br>referred to <i>n</i> (1)<br>(statement that n large in conductor and so current large max1)                                       | 2 |     |
|     | (c) | (In series), so same current and same <i>n</i> and <i>Q</i> (1)<br>$v_{\rm B}$ greater $v_{\rm A}$ (1)<br>$v_{\rm A}/v_{\rm B} = \frac{1}{4} // 0.25$ (1)                                                                                                                                                | 3 | [7] |
| 33. | (a) | pd = 3.6 V (1)<br>Example of answer;<br>p.d. = $0.24 \text{ A} \times 15 \Omega = 3.6 \text{ V}$                                                                                                                                                                                                         | 1 |     |
|     | (b) | Calculation of pd across the resistor (1)<br>[6.0 - 3.6 = 2.4  V]<br>Recall V = I <sub>R</sub> (1)<br>$I_1$ calculated from their pd / 4 $\Omega$ (1)<br>[correct answer is 0.60 A. Common ecf is 6V/4 $\Omega$ gives 1.5 A]<br>Example of answer:<br>$I_1 = 2.4 \text{ V} / 4.0 \Omega = 0.6 \text{ A}$ | 3 |     |

|     | (c) | [allo<br>Subs | Calculation of $I_2$ from $I_1 - 0.24$ [0.36 A] (1)<br>[allow ecf of their $I_1$ . common value = 1.26 A]<br>Substitution V = 3.6 V (1)<br>R = 10 $\Omega$ (1) |   | [7] |
|-----|-----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| 34. | (a) | (i)           | (- gradient =) $r = 1.95 - 2 \Omega$ (1)<br>E = 8.9 - 9 V (1)                                                                                                  | 2 |     |
|     |     | (ii)          | <i>I</i> = 2.15 – 2.17 A ( <b>1</b> )                                                                                                                          | 1 |     |
|     |     | (iii)         | Use of V = IR (1)<br>$R = 2.1 - 2.2 \Omega$ (1)                                                                                                                | 2 |     |
|     | (b) | (i)           | Battery or cell with one or more resistive component (1)<br>Correct placement of voltmeter and ammeter (1)                                                     | 2 |     |
|     |     | (ii)          | Vary R e.g. variable resistor, lamps in parallel (1)<br>Record valid readings of current and pd (consequent mark) (1)                                          | 2 |     |
|     |     |               | [Do not give these marks if the candidate varies the voltage as well]                                                                                          |   | [9] |

## 35. <u>Area of wire:</u>

Use of  $A = \pi r^2$  (1) Correct answer  $[1.9 \times 10^{-7} \text{ (m}^2)$ . Allow  $1.9 \times 10^{-7}$  and  $2.0 \times 10^{-7} \text{ (m}^2)]$ (1) 2 [No u.e.]

e.g.  

$$A = \pi r^2 = \pi \times (2.5 \times 10^{-4})^2$$
  
 $= 1.96 \times 10^{-7} \text{ m}^2$ 

### Table + graph:

| Length / Area / $\times 10^6$ m <sup>-1</sup> |     |
|-----------------------------------------------|-----|
| 0.0                                           |     |
| 0.5                                           |     |
| 1.0                                           |     |
| 1.5                                           |     |
| 2.0                                           |     |
| 2.5                                           |     |
| 3.1                                           |     |
| 3.6                                           | (1) |
| 4.0 - 4.1                                     |     |

First 2 points plotted correctly to within 1 mm (1) Rest of points in straight line with origin by eye (1)

3

4

Resistivity calculation:

Drawn through the origin, ignoring first 2 points (1) Recall  $\rho = R / (L/A)$  [in any form] (1) Large triangle drawn on graph OR accept the use of a pair of values (1) read from the line [ $x > 3 \times 10^{-6} \text{ m}^{-1}$ ) is required in **both** cases] [x-axis allowed as bottom of triangle] Correct answer [ $1.2 \times 10^{-7} \Omega$  m)] (1) [allow  $1.1 - 1.3 \times 10^{-7} (\Omega \text{ m})$ ] [no u.e.] e.g.  $0.4 / 3.4 \times 10^{6} = 1.2 \times 10^{-7} \Omega$  m

Anomalous results:

Any two of the following:

- Higher current/lower resistance for shorter lengths/at these points
- At shorter lengths/at these points wire gets hotter
- Non-uniform area/diameter
- Cable / contact resistance
- Sensitivity of meters
- Effect on resistance of any of the above (2)

[11]

max 2

| 36. | (a) | (i)                                  | Lamp brightness                                                                                                                                                                                                                                                         |            |     |
|-----|-----|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|
|     |     |                                      | Lamp A (1)                                                                                                                                                                                                                                                              |            |     |
|     |     |                                      | Larger current through it (at 9.0 V)/greater power (1)<br>(at 9.0 V)/smaller resistance (at 9.0 V)                                                                                                                                                                      | 2          |     |
|     |     | (ii)                                 | Battery current                                                                                                                                                                                                                                                         |            |     |
|     |     |                                      | Addition of currents (1)                                                                                                                                                                                                                                                |            |     |
|     |     |                                      | Current = $1.88 - 1.92 \text{ A}$ (1)                                                                                                                                                                                                                                   | 2          |     |
|     |     | (iii)                                | Total resistance                                                                                                                                                                                                                                                        |            |     |
|     |     |                                      | R = 9 V/1.9 A or use of parallel formula (1)                                                                                                                                                                                                                            |            |     |
|     |     |                                      | $R = 4.6 - 4.9 \Omega (1)$ [full ecf for their current]                                                                                                                                                                                                                 | 2          |     |
|     | (b) | Curr<br>Pd ad<br>Lam<br>P = b<br>Lam | <u>ps in series</u><br>ent same in both lamps/current in A reduced from original value (1)<br>cross A less than pd across B (1)<br>p A has a lower resistance than lamp B (1)<br>$VI$ or $P = RI^2$ (1)<br>p A will be dimmer than B [conditional on scoring ONE of (1) | Any 2<br>1 |     |
|     |     | the a                                | bove marks]                                                                                                                                                                                                                                                             |            | [9] |
| 37. | (a) | (i)                                  | Resistance                                                                                                                                                                                                                                                              |            |     |
|     |     |                                      | Use of $V/I$ [ignore $10^x$ ] (1)                                                                                                                                                                                                                                       |            |     |
|     |     |                                      | $3800 \Omega (3784 \Omega) (1)$                                                                                                                                                                                                                                         | 2          |     |
|     |     | (ii)                                 | Resistance of thermistor                                                                                                                                                                                                                                                |            |     |
|     |     |                                      | Use $\frac{V_R}{V_{TH}} = \frac{R}{R_{TH}}$ OR 9V/.74mA – R                                                                                                                                                                                                             | OR (1)     |     |
|     |     |                                      | $6.2 \text{ V} = 0.74 \text{ mA} \times \text{R}_{\text{TH}}$                                                                                                                                                                                                           |            |     |
|     |     |                                      | 8400 $\Omega$ [8378 $\Omega$ ] [substituting 4000 $\Omega$ gives 8857 $\Omega$ ie 8900 $\Omega$ ] (1)<br>[method 2 substituting 3800 $\Omega$ gives 8362 $\Omega$ : substituting 4000 $\Omega$<br>gives 8162 $\Omega$ ]                                                 | 2          |     |
|     |     |                                      |                                                                                                                                                                                                                                                                         |            |     |

(b) <u>Suggestion and Explanation</u>

The milliammeter reading increases (1)

Thermistor resistance 'becomes zero' /Short circuit (1)

Since supply voltage is constant / I = 9.0 V/R (1)

OR Circuit resistance reduced

[7]

3

**38.** (a) <u>Definition of E.M.F.</u>

Energy (conversion) or work done (1) Per unit charge (1) OR E = W/O(1)Symbols defined (1) [E = 1J/C scores 1]OR  $E = P/I(\mathbf{1})$ Symbols defined (1) 2 [terminal pd when no current drawn or open circuit scores max 1] (b) Voltmeter calculation Any attempt to find any current (1) Attempt to calculate pd across  $10 \Omega$  resistor (1) 5.77 V 2 OR Potential divider method; ratio of resistors with 10.4  $\Omega$  on the bottom (1) Multiplied by 6.0 V (1) 5.77 V (1) 3 [For either method, an answer of 0.23 V scores max 1] (c) Second battery added Voltmeter reading increased (1) Any two of: EMF unchanged Total resistance reduced current increases or "lost volts" decreases (2) 3

[8]

| 39. | Explanation increase of resistance with temperature                                                                          |   |
|-----|------------------------------------------------------------------------------------------------------------------------------|---|
|     | Temperature increase leads to increased lattice vibrations (1)                                                               |   |
|     | scattering flowing electrons / increased collisions of electrons. (1)                                                        | 2 |
|     |                                                                                                                              |   |
|     | Calculation of resistance at 200 °C                                                                                          |   |
|     | R = V/I  [stated or implied] (1)                                                                                             |   |
|     | $= 7.4 \text{ V} \div 0.19 \text{ A}$                                                                                        |   |
|     | $= 39 \Omega (1)$                                                                                                            | 2 |
|     | Discuss whether results support hypothesis                                                                                   |   |
|     | No. Resistance is not increasing with temperature. (1)                                                                       | 1 |
|     |                                                                                                                              |   |
|     | Calculation of mains voltage                                                                                                 |   |
|     | $P = V^2 \div R $ (1)                                                                                                        |   |
|     | $V^2 = PR$                                                                                                                   |   |
|     | = 1200 W × 41 $\Omega$ [Mark for rearrangement <b>OR</b> substitution] (1)                                                   |   |
|     | $[Accept 39 - 41 \Omega] [ecf]$                                                                                              |   |
|     | V = 220 V (1)                                                                                                                |   |
|     | [Allow $P = I^2 R$ (1),                                                                                                      | 3 |
|     | calculate I = 5.4 A and use in 1200 W = 5.4 A $\times V$ (1), $V$ = 220 V (1)]                                               |   |
|     |                                                                                                                              |   |
|     |                                                                                                                              |   |
| 40. | Resistance calculation                                                                                                       |   |
|     | Use $of R = \rho L/A$ (1)                                                                                                    |   |
|     | Substitution $R = 1.6 \times 10^{-4} \times 0.02/(5 \times (10^{-3}) \times 0.02 \times (10^{-3}))$ (1)                      |   |
|     | $= 32 \Omega (1)$                                                                                                            | 3 |
|     |                                                                                                                              |   |
|     | Total resistance                                                                                                             |   |
|     | Either Section $2 = \frac{1}{2} \times R_1$ (16 $\Omega$ ) OR Section $3 = \frac{1}{3} \times R_1$ (10.7 $\Omega$ ) (1)      |   |
|     | Use of $R_{\text{Total}} = R_1 + R_2 + R_3$ (1)                                                                              |   |
|     | $R_{\text{Total}} = 58.7 \Omega [55 \Omega \text{ if } 30 \Omega \text{ used as starting point}] (1)$                        | 3 |
|     | [ecf if section 3 calculated as $\frac{1}{4} \times R_1 = 56 \Omega$ OR 52.5 $\Omega$ if 30 $\Omega$ used as starting point] |   |
|     |                                                                                                                              |   |

[8]

### Why thermochromic ink becomes warm

| Current produces heat / reference to $I^2 R$<br>OR<br>Thermal conduction from conductive ink (1)            | 1 |     |
|-------------------------------------------------------------------------------------------------------------|---|-----|
| [Mark for identifying that the heating effect originates in the conductive ink]                             |   |     |
| Why only thin section transparent                                                                           |   |     |
| Thinner / section 1 has more resistance (1)                                                                 |   |     |
| So even a small current will heat it/Power (heating effect) given by $I^2R$ / current will heat it more (1) | 2 |     |
| [ <b>OR</b> opposite argument explaining why thicker section is harder to heat]                             |   | [9] |

### 41. <u>Circuits</u>

| Base unit:                                                                            | ampere OR amperes OR amp OR amps (1) |   |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------|---|--|--|
| Derived quantity:                                                                     | charge OR resistance (1)             |   |  |  |
| Derived unit:                                                                         | volt OR volts OR ohm OR ohms (1)     |   |  |  |
| Base quantity:                                                                        | current (1)                          | 4 |  |  |
| [If two answers are given to any of the above, both must be correct to gain the mark] |                                      |   |  |  |

# 42. (a) <u>Io and Jupiter: Time taken for electrons to reach Jupiter</u> $t = s/v = (4.2 \times 10^8 \text{ m})/(2.9 \times 10^7 \text{ m s}^{-1}) = 14.48 \text{ s}$ Correct substitution in v = s/t (ignore powers of ten) (1) Answer: 14.48 s, 14.5 s [no ue] (1)

(b) Estimate of number of electrons

$$Q = ne = It$$
  
 $n = It/e$   
 $n = (3.0 \times 10^{6} \text{ A}) (1s)/(1.6 \times 10^{-19} \text{ C})$   
Use of  $ne = It$  (1)  
 $(1.8 - 2.0) \times 10^{25}$  (1)

(c) <u>Current direction</u>

From Jupiter (to Io) / to Io / to the moon (1)

[5]

[4]

2

2

43. (a) p.d. across 4  $\Omega$  resistor 1.5 (A) × 4 ( $\Omega$ ) = 6 V (1)

> (b) <u>Resistance R<sub>2</sub></u> Current through R<sub>2</sub> = 0.5 A (1)  $R_2 = \frac{6(V)}{0.5(A)}$  $R_2 = 12 \Omega (1)$

[allow ecf their pd across 4  $\Omega$ ]

(c) <u>Resistance R<sub>1</sub></u> p.d. across R<sub>1</sub> = 12 - 6 - 4 = 2 V (1) Current through R<sub>1</sub> = 2 A (1) R<sub>1</sub> =  $\frac{2(V)}{2(A)}$  = 1 $\Omega$  (1) [allow ecf of pd from (a) if less than 12 V] Alternative method Parallel combination = 3 $\Omega$  (1) Circuit resistance = 12(V)/2 (A) = 6 $\Omega$  (1) R<sub>1</sub> = 6 - (3 + 2) = 1  $\Omega$  (1)

[allow ecf of pd from (a) and R from (b)]

44. (a) <u>Current in filament lamp</u> P = VI or correct rearrangement (1) 2 A (1)

2

[6]

3

1

### (b) (i) <u>Sketch graph</u>

Correct shape for their axes (1)

-I-V quadrant showing fair rotational symmetry (1)

(ii) Explanation of shape

(As the voltage/p.d. increases), current also increases (1)

(As the current increases), temperature of lamp increases (1)

(This leads to) an increase in resistance of lamp (1)

so equal increases in V lead to smaller increases in I OR rate of increase in current decreases OR correct reference to their correct (1) gradient

[If a straight line graph was drawn though the origin then (1)(0)(0)(1) for the following:

*V* is proportional to *R* therefore the graph has a constant gradient]

45. (a) (i) <u>Replacement</u>

 $V_1$  (1)

1

4

[8]

Explanation (ii)

> [ONE pair of marks] Resistance: resistance of  $\underline{V}_1$  [not just the voltmeter] is much larger than 100  $\Omega$  OR combined resistance of parallel combination is (1) approximately 100  $\Omega$

Voltage: p.d. across  $V_1$  is much greater than p.d. across 100  $\Omega$  OR (1) all 9 V is across V1

### OR

Current: no current is flowing in the circuit / very small current (1) Resistance: because  $V_1$  has infinite/very large resistance (1)

OR

(Correct current calculation 0.9 x 10  $^{-6}$  A and) correct pd calculation 90 x 10<sup>-6</sup> A (1) This is a very small/negligible pd (1)

#### (b) Circuit diagram

(i)

or equivalent resistor symbol labelled 10 M $\Omega$  (1) or equivalent resistor symbol labelled 10  $M\Omega$  (1)

2

3

2

[They must be shown in a correct arrangement with R]

(ii) Value of R

> 6 (V): 3 (V) = 10 (M $\Omega$ ): 5 (M $\Omega$ ) /  $R_{\text{total}}$  of parallel combination is 5 (1) MΩ

 $1/5 (M\Omega) = 1/10 (M\Omega) + 1/R$ OR some equivalent correct (1) substitution to show working

 $R = 10 \text{ M}\Omega$  (1)

[8]

**46.** Explain zeroing of meter

| No resistance when leads touched together/short circuit/calibration for zero error (1) | 1 |     |
|----------------------------------------------------------------------------------------|---|-----|
| Show that resistance is about 70 $\Omega$                                              |   |     |
| $R = V \div I(1)$                                                                      |   |     |
| $= 0.54 \text{ V} \div 0.0081 \text{ A}$                                               |   |     |
| $= 67 \Omega \text{ [no ue] (1)}$                                                      | 2 |     |
| Explain section from passage                                                           |   |     |
| Other currents/voltages/resistances present (1)                                        |   |     |
| change in current changes reading for resistance (1)                                   | 2 |     |
| Explain changes in meter reading with temperature increase                             |   |     |
| Increased lattice vibrations/vibration of atoms/molecules (1)                          |   |     |
| scattering flowing electrons/more collisions (1)                                       |   |     |
| increased resistance/increase meter reading (1)                                        | 3 | [8] |
|                                                                                        |   |     |

| 47. <u>Circuit diagram</u> |  |
|----------------------------|--|
|----------------------------|--|

| Ammeter and power source in series (1)                                                        |     |   |
|-----------------------------------------------------------------------------------------------|-----|---|
| Voltmeter in parallel with electrodes (1)                                                     | 2   |   |
| [Allow both marks if diagram shows an ohmmeter without a power pack –1 if power pack]         |     |   |
| Calculation of resistance                                                                     |     |   |
| Use of area = $\pi r^2$ (1)                                                                   |     |   |
| $R = 2.7 \times 10^{-3} \ \Omega \ \mathrm{m} \times 5.0 \times 10^{-4} \ \mathrm{m/A} \ (1)$ |     |   |
| $= 172 \Omega (171.9 \Omega) (1)$                                                             | 3   |   |
|                                                                                               |     |   |
| Plotting graph                                                                                |     |   |
| Axis drawn with R on y-axis and labelled with units (1)                                       |     |   |
| Points plotted correctly [-1 for each incorrect] (1)                                          |     |   |
| Sensible scale (1)                                                                            |     |   |
| Curve added passing through a minimum of 4 points (1)                                         | 4   |   |
| Diameter of hole                                                                              |     |   |
| Correct reading from graph = $0.23 \text{ mm}$ [Allow $0.22 - 0.26 \text{ mm}$ ] (1)          | 1   | - |
|                                                                                               | [10 | 1 |

48. <u>Temperature calculation</u>

Current =  $4.5 \times 10^{-3}$  A (1) p.d. across thermistor is 4.2 V (1)  $R_{\text{thermistor}} = 930 \ \Omega$  ecf their current and pd subtraction error (1) Temperature =  $32 \ ^{\circ}\text{C} - 34 \ ^{\circ}\text{C}$  [Allow ecf for accurate reading] (1) 4 <u>Supply doubled</u> Any two from: • Current would increase / thermistor warms up / temperature increases • Resistance of thermistor would decrease (1) (1) • Ratio of p.d.s would change No OR voltmeter reading / pd across R more than doubles (1) 3

[This mark only awarded if one of the previous two is also given]

[7]

| 49. | Diagram                                                                       |   |
|-----|-------------------------------------------------------------------------------|---|
|     | Labelled wire and a supply (1)                                                |   |
|     | Ammeter in series and voltmeter in parallel (1)                               |   |
|     | OR                                                                            |   |
|     | Labelled wire with no supply (1)                                              |   |
|     | Ohmmeter across wire (1)                                                      | 2 |
|     | Readings                                                                      |   |
|     | Current and potential difference OR resistance ( consistent with diagram) (1) |   |
|     | Length of wire (1)                                                            |   |
|     | Diameter of wire (1)                                                          | 3 |
|     |                                                                               |   |

## Use of readings

|     | -                                                                                  |   |      |
|-----|------------------------------------------------------------------------------------|---|------|
|     | $R = V/I \text{ OR } \rho = RA/l \text{ (1)}$                                      |   |      |
|     | Awareness that A is cross-sectional area (may be seen above and credited here) (1) |   |      |
|     | Repetition of calculation OR graphical method (1)                                  | 3 |      |
|     | Precaution                                                                         |   |      |
|     | Any two from:                                                                      |   |      |
|     | Readings of diameter at various places /different orientations                     |   |      |
|     | Contact errors                                                                     |   |      |
|     | • Zeroing instruments                                                              |   |      |
|     | • Wire straight when measuring length                                              |   |      |
|     | • Wire not heating up / temperature kept constant (1) (1)                          | 2 |      |
|     |                                                                                    |   | [10] |
|     |                                                                                    |   |      |
| =0  |                                                                                    |   |      |
| 50. | <u>Conductor resistance</u>                                                        |   |      |
|     | $R = \rho l / A (1)$                                                               |   |      |
|     | Correct substitution of data (1)                                                   |   |      |
|     | $R = 4.3 \times 10^{-2} \Omega$ (1)                                                | 3 |      |
|     |                                                                                    |   |      |
|     | Manufacturer's recommendation                                                      |   |      |
|     | Larger $A$ has a lower $R$ (1)                                                     |   |      |
|     | Energy loss depends on $I^2R$ / reduces overheating in wires (1)                   | 2 |      |
|     |                                                                                    |   | [5]  |
|     |                                                                                    |   |      |
| 51. | <u>Car battery</u>                                                                 |   |      |
| 51. | Voltmeter reading: 12.2 (V) (1)                                                    | 1 |      |
|     | Equation                                                                           | 1 |      |
|     |                                                                                    |   |      |
|     | Terminal p.d. = $12 \text{ V} + (5.0 \text{ A} \times 0.04 \Omega)$                |   |      |
|     | See 12V (1)                                                                        |   |      |
|     | See 5.0 A $\times$ 0.04 $\Omega$ (1)                                               | 2 |      |
|     | Addition of terms (1)                                                              | 3 |      |
|     | Wasted power                                                                       |   |      |
|     | See $0.04 \Omega + 0.56 \Omega$ OR $2.8 V + 0.2 V$ OR $5 x (15 - 12) W (1)$        |   |      |
|     | Power = 15 W (1)                                                                   | 2 |      |

|     | Efficiency                                                                     |   |      |
|-----|--------------------------------------------------------------------------------|---|------|
|     | (same current) 12 V / 15 V OR $P_{OUT}/P_{IN} = 60 \text{ W}/75 \text{ W}$ (1) |   |      |
|     | Efficiency = $0.8/80\%$ Efficiency = $0.8/80\%$ (1)                            | 2 |      |
|     |                                                                                |   |      |
|     | Explanation                                                                    |   |      |
|     | Any two from:                                                                  |   |      |
|     | • Starter motor / to start car needs (very) large current                      |   |      |
|     | • $I = \frac{E}{R+r}$                                                          |   |      |
|     | • ( <i>E</i> and <i>R</i> fixed) $r_{\min} \Rightarrow I_{\max}$ (1) (1) (1)   | 2 |      |
|     |                                                                                |   | [10] |
|     |                                                                                |   |      |
| 52. | Circuit diagram                                                                |   |      |
|     | Variable voltage (1)                                                           |   |      |
|     | Includes ammeter and voltmeter (1)                                             |   |      |
|     | in series and parallel respectively (1)                                        | 3 |      |
|     | [No penalty for LED bias]                                                      |   |      |
|     | Description of current variation in LEDs                                       |   |      |
|     | Initially, increasing voltage still gives zero current                         |   |      |
|     | OR                                                                             |   |      |
|     | Current doesn't flow until a specific minimum voltage (1)                      |   |      |
|     | Current then increases (1)                                                     |   |      |
|     | with an increasing rate of increase (1)                                        | 3 |      |
|     |                                                                                |   |      |
|     | Discussion of whether LEDs obey Ohm's law                                      |   |      |
|     | No (1)                                                                         |   |      |
|     | I not proportional to $V$                                                      |   |      |
|     | OR                                                                             |   |      |
|     | <i>R</i> not constant / V/I not constant / R decreases (1)                     | 2 |      |
|     | Calculation of resistance of green LED at 1.9 V                                |   |      |
|     | R = V/I [Stated or implied] (1)                                                |   |      |
|     | $= 1.9 \text{ V} \div 1.46 \times 10^{-3} \text{ A}$                           |   |      |
|     | $= 1300 \Omega (1)$                                                            | 2 |      |
|     |                                                                                |   |      |

|     | <u>Calculation of power dissipated by red LED at 1.7 V</u><br>P = IV [Stated or implied] (1)                                             |   |      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|---|------|
|     | $= 3.89 \times 10^{-3} \text{ A} \times 1.7 \text{ V} \text{ [do not penalise mA twice]}$                                                |   |      |
|     | $= 6.6 \times 10^{-3} \text{ W} (1)$                                                                                                     | 2 |      |
|     | $-0.0 \times 10^{-10}$ W(1)                                                                                                              | 2 | [12] |
|     |                                                                                                                                          |   |      |
|     |                                                                                                                                          |   |      |
| 53. | Charge                                                                                                                                   |   |      |
|     | Charge is the <u>current <math>\times</math> time</u> (1)                                                                                | 1 |      |
|     | Potential difference                                                                                                                     |   |      |
|     | Work done per unit charge [flowing] (1)                                                                                                  | 1 |      |
|     | Energy                                                                                                                                   |   |      |
|     | $9 \text{ V} \times 20 \text{ C}$ (1)                                                                                                    |   |      |
|     | = 180 J (1)                                                                                                                              | 2 |      |
|     |                                                                                                                                          |   | [4]  |
|     |                                                                                                                                          |   |      |
|     |                                                                                                                                          |   |      |
| 54. | Number of electrons                                                                                                                      |   |      |
|     | $(-64 \times 10^{-9} \text{ C}) / (-1.6 \times 10^{-19} \text{ C}) = 4.0 \times 10^{11} \text{ electrons}$                               |   |      |
|     | Use of $n = Q/e$ (1)<br>Seeing $1.6 \times 10^{-19}$ C (1)                                                                               |   |      |
|     | Answer of $4.0 \times 10^{11}$ (electrons) (1)                                                                                           | 3 |      |
|     | [Use of a unit is a ue]                                                                                                                  | 5 |      |
|     | [-ve answer: 2/3]                                                                                                                        |   |      |
|     |                                                                                                                                          |   |      |
|     | Rate of flow                                                                                                                             |   |      |
|     | $(6.4 \times 10^{-8} \text{ C})/3.8 \text{ s} = 16.8/17 \text{ [nC s}^{-1}\text{] OR } 16.8/17 \times 10^{-9} \text{ [C s}^{-1}\text{]}$ |   |      |
|     | (6.4) / 3.8 s i.e. use of $I = Q/t$ [Ignore powers of 10] (1)                                                                            |   |      |
|     | Correct answer [No e.c.f.] [1.7 or 1.68 x $10^{-8}$ or $1.6 \times 10^{-8}$ ] (1)                                                        | 2 |      |
|     |                                                                                                                                          | _ |      |
|     | Amp(ere)/A (1)                                                                                                                           | 1 |      |
|     | · · · · · · · · · · · · · · · · · · ·                                                                                                    |   | [6]  |
|     |                                                                                                                                          |   |      |

# **55.** Explanation of observation

Any two from:

| 5                                                                                                                                  |   |
|------------------------------------------------------------------------------------------------------------------------------------|---|
| • LED on reverse bias/ <i>R</i> in LED infinite/ LED wrong way round                                                               |   |
| • so current is zero /LED does not conduct / <u>very</u> small reverse bias current                                                |   |
| • since $V = IR$                                                                                                                   |   |
| • $V = 0 \times 1 K = 0 V (1) (1)$                                                                                                 | 2 |
|                                                                                                                                    |   |
| Explanation of dimness                                                                                                             |   |
| $R_V \underline{very}$ large / $R_V$ much greater than $R_{LED}$ (1)<br>Current very low / pd across LED very small (not zero) (1) | 2 |
| <u>Circuit diagram</u>                                                                                                             |   |
| LED in forward bias (1)<br>Variation of pd across LED (1)                                                                          |   |
| Voltmeter in parallel with LED alone (1)                                                                                           | 3 |
| [LED in series with voltmeter 0/3]                                                                                                 |   |
|                                                                                                                                    |   |
|                                                                                                                                    |   |

| 56. | <u>Circuit diagram</u><br>Ammeter in series with cell <u>and</u> variable resistor (correct symbol) (1)<br>Voltmeter in parallel with cell OR variable resistor (1) | 2 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | Power output at point X<br>Power = voltage × current (1)<br>= $0.45 \text{ V} \times 0.6 \text{ A}$                                                                 |   |
|     | = 0.27  W(1)                                                                                                                                                        | 2 |
|     | Description of power output<br>Any three from:                                                                                                                      |   |
|     | • Current zero; power output zero/small/low                                                                                                                         |   |
|     | • As current increases power output also increases                                                                                                                  |   |
|     | • Then (after X ) power decreases                                                                                                                                   |   |
|     | • Maximum current; power output zero (1) (1) (1)                                                                                                                    | 3 |
|     | [Accept reverse order]                                                                                                                                              |   |

[Accept reverse order]

[7]

|     | $\frac{\text{e.m.f. of cell}}{0.58 \text{ V (1)}}$ $\frac{\text{Internal resistance}}{\text{Attempt to use } \frac{\text{"lost volts"}}{\text{current}} \text{ OR } \boldsymbol{\varepsilon} = V + IR \text{ (1)}$                                                               | 1 |      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|
|     | $= \frac{0.58V - 0.45V}{0.6A}$<br>= 0.217 / 0.2 \Omega (1)<br>[ecf an emf greater than 0.45 V]                                                                                                                                                                                   | 2 | [10] |
| 57. | Statement 1Statement is false (1)Wires in series have same current (1)Use of $I = nAev$ with $n$ and $e$ constant (1)[The latter two marks are independent]                                                                                                                      | 3 |      |
|     | Statement 2<br>Statement is true (1)<br>Resistors in parallel have same p.d. (1)<br>Use of Power = $V^2/R$ leading to $R \uparrow$ , power $\downarrow$ (1)<br>OR as $R \uparrow$ , $I \downarrow$ leading to a lower value of $VI$ 3 <sup>rd</sup> mark consequent<br>on second | 3 | [6]  |
| 58. | Explanation of assumption that voltmeter does not affect values<br>Voltmeter has very high resistance/takes very small current (1)<br>Current through X<br>$4.8 \text{ A} \div 6 = 0.8 \text{ A}$                                                                                | 1 |      |

OR 48 V  $\div$  60  $\Omega$  = 0.8A (1)

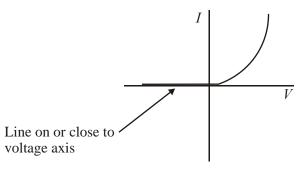
| Value missing from E7                                                                    |   |      |
|------------------------------------------------------------------------------------------|---|------|
| P = IV                                                                                   |   |      |
| $P = 4.4 \text{ A} \times 53 \text{ V} = 233 \text{ W}$ (1)                              | 1 |      |
| Description of appearance of lamp X as lamps switched on                                 |   |      |
| Gets dimmer                                                                              |   |      |
| from table, voltage decreasing / current in X decreasing / power per lamp decreasing (1) | ) |      |
| So P decreases (1)                                                                       | 3 |      |
|                                                                                          |   |      |
| Formula for cell C6                                                                      |   |      |
| $I = \varepsilon / R_{tot} (1)$                                                          |   |      |
| I = 120 / (15 + B6) (1)                                                                  | 2 |      |
| Effect of internal resistance on power                                                   |   |      |
| Power has a maximum value (1)                                                            |   |      |
| when external resistance = internal resistance $(1)$                                     | 2 |      |
|                                                                                          |   | [10] |

## **59.** <u>Measurement needed</u>

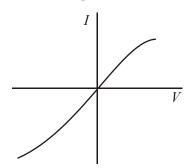
Any three from:

- Resistance
- Distance between probes
- Effective area/cross sectional area

• 
$$R = \rho \frac{L}{A}$$
 (1) (1) (1) 3


Equation of line A Intercept = -3.5 (Ω m) (+/- 0.3) (1) Gradient = 1.5 (Ω mm<sup>-1</sup>) (+/- 0.05) (1) So equation is  $\rho = 1.5 d - 3.5$  [Or equivalent, e.c.f. allowed] (1) 3

|     | Addition of line<br>Points correctly plotted (-1 for each error, allow ½ square tolerance) (1) (1)<br>Line of best fit drawn (1)<br><u>Best distance</u><br>Between 1.90 and 1.99 km (1)                                                  | 3<br>1 | [10] |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| 60. | <u>Resistance calculations</u><br>Evidence of 20 $\Omega$ for one arm (1)<br>$\frac{1}{R} = \frac{1}{20} + \frac{1}{20}$ (1)<br>$R = 10 \Omega$ (1)                                                                                       | 3      |      |
|     | CommentThis combination used instead of a single 10 Ω resistor [or same<br>value as before] (1)because a smaller current flows through each resistor/reduce heating<br>in any one resistor/average out errors in individual resistors (1) | 2      | [5]  |


## 61. Graphs

Diode:

RH quadrant: any curve through origin (1) Graph correct relative to labelled axes (1) LH side: any horizontal line close to axes (1)



Filament lamp



RH quadrant: Any curve through origin (1) Curve correct relative to axes (1) LH quadrant: Curve correct relative to RH quadrant (1) [Ohmic conductor scores 0/3]

3

1

2

1

[6]

| 62. | Circuit<br>Ammeters and two resistors in series (1)<br>[1 mark circuit penalty for line through cell or resistor]<br>Cell e.m.f<br>$E = 150 \times 10^{-6}$ (A) x 40 x $10^{3}$ ( $\Omega$ ) total R (1)<br>Powers of 10 (1)<br>E = 6.0 (V) |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | New circuit                                                                                                                                                                                                                                 |
|     | Voltmeter in parallel with <u>25</u> (kΩ) resistor (1)<br><u>Resistance of voltmeter</u><br>(Total resistance) = $\frac{6(V)}{170 \times 10^{-6}(A)}$                                                                                       |

 $= (35.3 \text{ k}\Omega)$ (1) (Resistance of ll combination) = 35 - 15 kΩ  $= (20 \Omega) [\text{e.c.f. their total resistance}]$ (1)  $\frac{1}{20} = \frac{1}{25} + \frac{1}{R_V}$ 1 5 - 4

$$\overline{R_V} = \overline{100}$$

 $R_V = 100 \text{ k}\Omega \text{ [108 k}\Omega \text{ if } R_{\text{T}} \text{ calculated correctly]}$ (1)

#### Alternative route 1:

| p.d. across 15 k $\Omega$ = 2.55 V                 | (1) |
|----------------------------------------------------|-----|
| $(\therefore$ p.d. across ll combination = 3.45 V) |     |
| resistance combination = $20 \text{ k}\Omega$      |     |
| $\rightarrow R_V = 100 \text{ k}\Omega$            | (1) |
|                                                    | (1) |

[7]

3

3

4

# Alternative route 2:p.d. across parallel combination = 3.45 V(1)I through $25 \text{ k}\Omega = 138 \mu \text{A}$ (1) $\rightarrow R_V = 100 \text{ k}\Omega$ (1)(1)(1)

63. <u>Resistance of strain gauge</u> State  $R = \frac{\rho l}{A}$  (1) Use of formula (1) x 6 (1)  $R = 0.13 \Omega$  [ecf their l] (1)

 $\begin{pmatrix} R = \frac{\rho l}{A} = \frac{9.9 \times 10^{-8} \,\Omega \text{m} \times 2.4 \times 10^{-2} \,\text{m} \times 6}{1.1 \times 10^{-7} \,\text{m}^2} \\ = 129.6 \times 10^{-3} \,\Omega \\ R = 0.13 \,\Omega \end{pmatrix}$ 

Change in resistance

 $\Delta R = 0.13 \ \Omega \times 0.001$   $\Delta R = 1.3 \times 10^{-4} \ (\Omega) \ [\text{no e.c.f.}]$ OR  $\Delta R = 0.02 \times 0.001$   $\Delta R = 2.0 \times 10^{-5} \ \Omega$ 0.1%  $\rightarrow 0.001 \ (1)$ Correct number for  $\Delta R \ (1)$ 

Drift velocity

Stretching causes R to increase (1)

Any two from:

- Current will decrease
- I = nA vQ
- Drift velocity v decreases
- nAe constant (1) (1)

[9]

3

[For *R* decreasing, max 1:

- Any one from:
- *I* will increase
- I = nA vQ
- v will increase
- *nAe* constant]

| 64. | Resistance in darkness                                                                                                         |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------|---|
|     | In the dark $R = 4 \text{ k}\Omega$ (1)<br>so resistance per mm = 4000 $\Omega/40 \text{ mm} = 100 \Omega(\text{mm}^{-1})$ (1) | 2 |
|     | Resistance of 8 mm length                                                                                                      |   |
|     | In the light $R = 200 \Omega$ (1)<br>so resistance of 8 mm strip = (8 mm/40 mm) × 200 $\Omega$ [= 40 $\Omega$ ] (1)            | 2 |
|     | Calculations                                                                                                                   |   |
|     | Resistance of remainder = $32 \text{ mm} \times 100 \Omega \text{ mm}^{-1} = 3200 \Omega$ (1)                                  | 1 |
|     | (i) Total resistance = $3240 \Omega$ (1)<br>Current = $V/R = 1.2 V/3240 \Omega = 3.7 \times 10^{-4} A$ (1)                     |   |

(ii) Across 8 mm, p.d. =  $IR = 3.7 \times 10^{-4} \text{ A} \times 40 \Omega$  (1) = 0.015 V (1)

Explanation of why current decreases

Any two points from:

- more of strip is now in the dark
- greater total resistance
- I = V/R where V is constant (1) (1) Max 2

[11]

65. <u>Resistance of lamps</u>

| $P = \frac{V^2}{R}$ OR $I = 60/12 = (5 \text{ A})$                                     | 1 |
|----------------------------------------------------------------------------------------|---|
| $R = \frac{12 \text{ V} \times 12 \text{ V}}{60 \text{ W}} \qquad \underline{R} = V/I$ | 1 |
| $R = 2.4 \Omega$                                                                       | 1 |
|                                                                                        |   |
| Resistance variation                                                                   |   |
| Lamp A: resistance of A decreases with current increase                                | 1 |
| Lamp B: resistance of B increases with current increase                                | 1 |
| •                                                                                      |   |
| Dim filament                                                                           |   |
| Lamps are dim because p.d. across each bulb is less than 12 V                          | 1 |
|                                                                                        | - |
| Why filament of lamp A is brighter                                                     |   |
| Bulbs have the same current                                                            | 1 |
|                                                                                        | 1 |
| p.d. across $A > p.d.$ across B/resistance $A >$ Resistance B                          | I |
| OR                                                                                     |   |
| power in A > power in B                                                                | 2 |
|                                                                                        |   |

## 66. <u>Current in heating element</u>

| Current in nearing cicilient              |                                         |   |
|-------------------------------------------|-----------------------------------------|---|
| p = VI                                    | $p = \frac{V^2}{R}$                     | 1 |
| $I = \frac{500 \text{ W}}{230 \text{ V}}$ | $R = \frac{230^2}{500} / 105.8(\Omega)$ |   |
| <i>I</i> = 2.2 A                          | <i>I</i> = 2.2 A                        | 1 |
|                                           |                                         | 1 |

# Drift velocity

Drift velocity greater in the thinner wire / toaster filament

1

[8]

| Explanation                                         |   |
|-----------------------------------------------------|---|
| Quality of written communication                    | 1 |
| See $I = nAQv$                                      | 1 |
| <i>I</i> is the same (at all points )               | 1 |
| (probably) $n$ (and $Q$ ) is the same in both wires | 1 |
|                                                     |   |

# 67. <u>Resistance of films</u>

$$R = \frac{\rho l}{A}$$

$$R = \frac{\rho l}{\omega t} \text{ or } A = \omega t \text{ [consequent on first mark]}$$
1

[i.e. product =  $\omega t$ ]

Resistance calculation

$$R = \frac{(6.0 \times 10^{-5} \,\Omega \text{m}) \times (8 \times 10^{-3})}{(3 \times 10^{-3} \,\text{m}) \times (0.001 \times 10^{-3} \,\text{m})}$$

OR

$$R = \frac{(6.0 \times 10^{-5} \,\Omega \text{m}) \times (8 \,\text{mm})}{(3.0 \,\text{mm})(1.0 \times 10^{-6} \,\text{m})}$$

 $R = 160 \ \Omega$ 

Correct substitution except powers of 101Correct powers of 101Answer1

Resistance of square film

$$\frac{l=\omega}{R=\frac{\rho}{1}}$$

$$K = -\frac{1}{t}$$
[7]

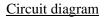
[8]

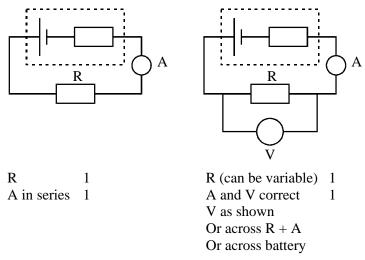
## **68.** <u>Definition of e.m.f. of a cell</u>

| Work/energy (conversion) per unit charge        | 1 |
|-------------------------------------------------|---|
| for the whole circuit / refer to total (energy) | 1 |
| OR                                              |   |
| Work/energy per unit charge                     | 1 |
| converted from chemical to electrical (energy)  | 1 |

OR

$$E = \frac{W}{Q}$$
 for whole circuit 1

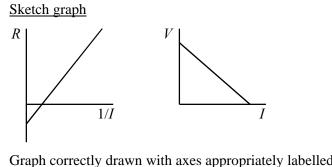

All symbols defined


OR

$$E = \frac{P}{I}$$
 for whole circuit 1

All symbols defined

[Terminal p.d. when no current drawn scores 1 mark only]






[2<sup>nd</sup> mark is consequent on R(fixed, variable) or lamp]

2

1



Graph correctly drawn with axes appropriately labelled and<br/>consistent with circuit drawn1Intercept on R axesGradient = (-)r [Gradient mark consequent1 $\equiv (-)r$ on graph mark]

[Gradient may be indicated on graph]

[6]

| 69. | Total e.m.f of cells in series                                  |   |
|-----|-----------------------------------------------------------------|---|
|     | e.m.f. in series add up / $6000 \times 40 \times 10^{-3}$ V (1) |   |
|     | = 240 V ( <b>1</b> )                                            | 2 |
|     |                                                                 |   |
|     | Internal resistance of cells in series                          |   |
|     | $6000 \times 0.70 \ \Omega = 4200 \ \Omega$ (1)                 | 1 |
|     | Calculation of current                                          |   |
|     | $I = V \div R (1)$                                              |   |
|     | $= 240 \text{ V} \div 4200 \ \Omega = 0.057 \text{ A}$ (1)      | 2 |
|     |                                                                 |   |
|     | Calculation of total current                                    |   |
|     | $20 \times 0.057 \text{ A} = 1.1 \text{ A}$ (1)                 | 1 |
|     | Explanation of voltmeter reading                                |   |
|     | Since $V = IR$ (1)                                              |   |
|     | and $R = 0 \Omega$ (1)                                          |   |
|     | $V = 0 V \neq e.m.f.$                                           |   |
|     | OR                                                              |   |
|     | V=E-Ir( <b>1</b> )                                              |   |
|     |                                                                 |   |

|   | $r\neq 0\;\Omega\left(1\right)$ |                                                                           |   |     |
|---|---------------------------------|---------------------------------------------------------------------------|---|-----|
|   | so $V < E$                      |                                                                           |   |     |
|   | OR                              |                                                                           |   |     |
|   | Lost volts (                    | 1)                                                                        |   |     |
|   | across inter                    | nal resistance (1)                                                        | 2 |     |
|   |                                 |                                                                           |   |     |
|   | Voltmeter 1                     | eading                                                                    |   |     |
|   | 0 V [No u.e                     | e.] (1)                                                                   | 1 | [0] |
|   |                                 |                                                                           |   | [9] |
|   |                                 |                                                                           |   |     |
| • | <u>Resistor</u>                 |                                                                           |   |     |
|   | (i)                             | $A = \pi r^2 = \pi \times (4.0 \times 10^{-4})^2$ (1)                     |   |     |
|   |                                 | $= 5.03 \times 10^{-7} \text{ m}^2 \text{ (no u.e) (1)}$                  | 2 |     |
|   | (ii)                            | Recall of $R = \rho l/A$ (1)                                              |   |     |
|   |                                 | Length $l = RA/\rho$                                                      |   |     |
|   |                                 | = $0.12 \times 5.0 \times 10^{-7}$ / $1.8 \times 10^{-8}$ [substitutions] |   |     |
|   |                                 | = 3.3 m (1)                                                               | 3 |     |
|   | <u>Advantage</u>                | of using iron wire of same diameter                                       |   |     |
|   | Shorter pie                     | ce of wire needed (if iron chosen) (1)                                    | 1 |     |
|   |                                 |                                                                           |   | [6] |

Unit of current 71.

70.

Amps/ampere (1)

Base units of p.d. *For V* = *IR method* 

Any three from: •  $V = J C^{-1}$ 

- $\mathbf{C} = \mathbf{A} \mathbf{s}$
- J = N m
- $N = kg m s^{-2}$

 $[\text{kg m}^2 \text{ s}^{-3} \text{ A}^{-1}]$ 

[See J = kg,  $m^2 s^{-2}$  (1) (1)]

OR

For P = VI method

- Watt is J s-1 / J/s
- $V = \mathbf{J} \mathbf{s}^{-1} \mathbf{A}^{-1}$
- J = Nm
- N = kg m<sup>2</sup> s<sup>-2</sup> (1) (1) (1) (1) (1)

[See kg m<sup>2</sup> s<sup>-2</sup> (1) (1)]

[4]

3

# 72. Show that resistance is approximately $45 \Omega$

$$R = \frac{\rho l}{A}$$
  
R =  $\frac{5.5 \times 10^{-5} \,\Omega \,\mathrm{m} \times 0.65 \,\mathrm{m}}{8.0 \times 10^{-7}}$ 

 $= 44.7 \Omega$  [No u.e.] (1)

[Must see this value and not 45]

Table

| Switch X | Switch Y | Resistance of heater/ $\Omega$ |  |
|----------|----------|--------------------------------|--|
| Open     | Closed   | 22.5/22.35                     |  |
| Closed   | Open     | 45/44.7                        |  |
| Closed   | Closed   | 15/14.9                        |  |

[No u.e.]

#### Calculation of maximum power

$$P = \frac{V^2}{R}$$
 Use of equation with 15  $\Omega$  OR their *minimum* value (1)  
= 3526 W,3500 W [full ecf] (1)

Explanation of power output fall

As the temperature of the heater increases OR as it gets hotter / hot }resis tan ce (of metals) increases

Since V is constant 
$$P = \frac{V^2}{R}$$
 OR  $P = VI$  and  $V = IR$ 

3

| [Then $P \downarrow$ as $R \uparrow$ ] (1)                                                                 | 2 |      |
|------------------------------------------------------------------------------------------------------------|---|------|
| $\operatorname{OR} P \propto \frac{1}{R}  [\operatorname{so} P \downarrow \operatorname{as} R^{\uparrow}]$ |   |      |
|                                                                                                            |   | [10] |
|                                                                                                            |   |      |
| Explanation of greater drift velocity                                                                      |   |      |
| (Electrons have greater drift velocity) in the thinner wire (1)                                            |   |      |
| Any two from:                                                                                              |   |      |
| • Some current in both wires                                                                               |   |      |

- Same current in both wires ٠
- Reference to I = nAQv
- nQ same in both wires (1) (1)

## Explanation of higher dissipation of power

(Higher power is dissipated) by the smaller(er)/ low resistor (1)

#### Any two from:

73.

- Resistors have same p.d. across them
- The small resistor has the largest current [or reverse] ٠
- Power = voltage × current, OR voltage<sup>2</sup> ÷ resistance [NOT  $I^2 R I$  (1) (1)

74.

| Circuit diagram                                                                   |   |
|-----------------------------------------------------------------------------------|---|
| Resistor with another variable resistor/potential divider/variable power pack (1) |   |
| Ammeter reading current through resistor (1)                                      |   |
| Voltmeter in parallel with resistor (1)                                           | 3 |
|                                                                                   |   |
| Graph labels                                                                      |   |

3

3

1

[6]

|     | Potential difference                                                                                               |   |     |
|-----|--------------------------------------------------------------------------------------------------------------------|---|-----|
|     | At 0.5 A p.d.= $3.5 \text{ V} / 3.4 \text{ V} + 7.8 \text{ V} / \text{idea of adding p.d.}$ [for same current] (1) |   |     |
|     | = 11.2 V/11.3 V (1)                                                                                                | 2 |     |
|     | [Accept 11.0 –11.5 V]                                                                                              |   |     |
|     | Resistance of lamp                                                                                                 |   |     |
|     |                                                                                                                    |   |     |
|     | $\frac{3.5 \text{ V}}{0.5 \text{ A}}$ [OR their value of p.d. across lamp $\div 0.5 \text{ A}$ ] (1)               |   |     |
|     | $= 7.0 \Omega (1)$                                                                                                 | 2 |     |
|     | [e.c.f. their value]                                                                                               |   |     |
|     |                                                                                                                    |   | [8] |
|     |                                                                                                                    |   |     |
| 75. | Meaning of m                                                                                                       |   |     |
|     | × 10-3 (1)                                                                                                         | 1 |     |
|     |                                                                                                                    |   |     |
|     | Calculation of resistance for reading 3                                                                            |   |     |
|     | $R = V/I \text{ OR } R = 74 \times 10^3 \text{ V} \div 150 \times 10^{-9} \text{ A} \text{ [ecf for milli] (1)}$   |   |     |
|     | $R = 4.9 \times 10^5 \Omega$ (1)                                                                                   | 2 |     |
|     | Calculation of power for reading 4                                                                                 |   |     |
|     |                                                                                                                    |   |     |
|     | $P = I \times V \text{ OR } P = \frac{V^2}{R} \text{ OR } P = I^2 R \text{ (1)}$                                   |   |     |
|     | $= 210 \times 10^{-9} \text{ A} \times 57 \times 10^{-3}$ (1)                                                      | 2 |     |
|     | $= 1.2 \times 10^{-8} \text{ W}$                                                                                   |   |     |
|     |                                                                                                                    |   |     |
|     | Plotting points on graph                                                                                           |   |     |
|     | Two correct points (1)<br>Third correct point (1)                                                                  |   |     |
|     | Best fit straight line for points as they appear on student's graph (1)                                            | 3 |     |
|     |                                                                                                                    |   |     |
|     | Predicting short-circuit current                                                                                   |   |     |
|     | Correct from graph, e.g 450 nA (1)                                                                                 | 1 |     |
|     | Suggested e.m.f                                                                                                    |   |     |
|     | Correct from graph, or table, 110 mV (1)                                                                           | 1 |     |
|     | Brupn, or more,o (2)                                                                                               | - |     |

Cell has internal resistance/ "lost volts" (1) "Lost volts" = Ir, so lost volts increase as current increases OR V = E - Ir, so V decreases as I increases (1)

2

3

2

3

[12]

## 76. Equation to define resistivity

$$\rho = \frac{RA}{l} (\mathbf{1})$$

All symbols defined (resistivity, resistance, length, cross-sectional area) (1) (1) [3 symbols only defined (1)]

#### Resistance meter

Any two from:

- the resistance between the two probes is measured, not the resistivity
- because you cannot measure the cross-sectional area of skin between the probes
- *A* and *l* both vary; cannot calculate resistivity (1) (1)

#### Whether results support claims

Yes (1)

Any two from:

- resistance chances with programme content
- least resistance with political programme
- sweat reduces resistance / is a better conductor (1) (1)

[8]

| 77. | • |
|-----|---|
|     |   |

| Word Equation      | Quantity Defined   |     |
|--------------------|--------------------|-----|
| Voltage ÷ Current  | Resistance         | (1) |
| Voltage × Current  | Power              | (1) |
| Charge ÷ Time      | Current            | (1) |
| Work done ÷ Charge | Voltage/p.d./e.m.f | (1) |

[4]

2

78. <u>Charge calculation</u>

 $Q = 20\ 000 \times 4.0 \times 10^{-4}$  s [substitution] Q = 8.0 C/A s

Resistance calculation

$$R = \frac{\rho l}{A}$$
  
=  $\frac{(1.7 \times 10^{-8} \Omega)(50m)}{(1.0 \times 10^{-3} m^2)}$   
R = 8.5 × 10-4  $\Omega$ 

Formula (1) Correct substitution (1) Answer 3 (1) Potential difference calculation V = IR=  $(20\ 000\ A) \times (85 \times 10^{-5}\ \Omega)$  [or their value] = 17 V [Allow full e.c.f] (1) (1) 2 **Explanation** For the tree: R or p is larger (1) 1 [8]

| 79. | <u>Networks</u>            |                                                                          |   |
|-----|----------------------------|--------------------------------------------------------------------------|---|
|     | First network:             | $2.5(\Omega)$ (1)                                                        |   |
|     | Second network:            | $25(\Omega)$ (1)                                                         |   |
|     | Third network:             | 10 (Ω) (1)                                                               | 3 |
|     | Meter readings             |                                                                          |   |
|     | Ammeter:                   | 25 (mA) (1)                                                              |   |
|     | Voltmeter V <sub>1</sub> : | $25 \times 10 \text{ OR } 50 \times 5 \text{ [ignore powers of 10]}$ (1) |   |
|     | = 0.25  V (1)              |                                                                          |   |
|     | Voltmeter V <sub>2</sub> : | $50 \times 25$ [ignore powers of 10] (1)                                 |   |
|     | = 1.25  V (1)              |                                                                          | 5 |

[8]

#### 80. Potential difference across resistors

| 2.0 MΩ: | 6.0 V |   | 5.99998 V<br>OR                | )<br>} | (1) |   |
|---------|-------|---|--------------------------------|--------|-----|---|
| 4.0 Ω:  | 0V    | J | $1.2 \times 10^{-5} \text{ V}$ | J      | (1) | 2 |

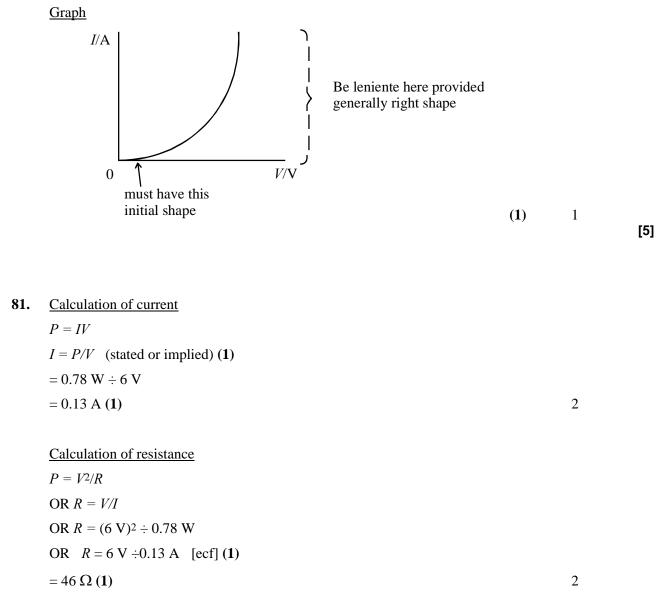
Second potential divider circuit

p.d. across 45  $\Omega$ :

$$\left(\frac{45}{50} \times 6.0 \text{ V}\right) = 5.4 \text{ V}$$
 (1)

p.d. across diode:

(6.0 V - 5.4 V) = 0.6 V (1)


2

[Allow e.c.f. for 2<sup>nd</sup> mark if candidate uses

 $\frac{5}{45} \times 6.0 \text{ V} = 0.7 \text{ V} \text{ for diode}$ 

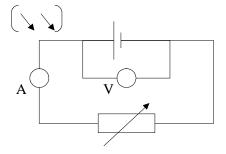
then

6.0~V-0.7~V5.3~V for 45  $\Omega]$ 



| -                                                                 |   |
|-------------------------------------------------------------------|---|
| Explanation of operation from mains                               |   |
| In series (1)                                                     |   |
| 240 V $\div$ 40 lamps = 6 V per lamp (1)                          | 2 |
| Explanation of constant brightness of lamps                       |   |
| Current equal – justified, e.g. in series or same V/R or same P/V | 1 |

|     | Statement and explanation of different resistance with ohmmeter                                       |   |      |
|-----|-------------------------------------------------------------------------------------------------------|---|------|
|     | Lower resistance with ohmmeter (1)                                                                    |   |      |
|     | Identify lower temperature with ohmmeter [may be implied] (1)                                         |   |      |
|     | (Lattice) ions'/atoms' vibrations impede electrons/current (1)                                        |   |      |
|     | [Require interaction]                                                                                 |   |      |
|     | [Allow converse argument]                                                                             | 3 |      |
|     |                                                                                                       |   | [10] |
|     |                                                                                                       |   |      |
| 82. | Explanation of amp hours                                                                              |   |      |
|     | Charge = current × time or $Q = It$ (1)                                                               |   |      |
|     | Amp $\rightarrow$ current and hour $\rightarrow$ time (so amp $\times$ hour $\rightarrow$ charge) (1) | 2 |      |
|     |                                                                                                       |   |      |
|     | Show that charge about 5000 C                                                                         |   |      |
|     | Charge = $1.5 \text{ A} \times 1 \times 60 \times 60 \text{ s}$                                       |   |      |
|     | = 5400 C                                                                                              | 1 |      |
|     |                                                                                                       |   |      |
|     | Calculation of energy stored                                                                          |   |      |
|     | W = QV  OR  W = I  v  t  (1)                                                                          |   |      |
|     | $= 5400 \text{ C} \times 3 \text{ V} \text{ [may use 5000 C]}$                                        |   |      |
|     | $= 16\ 200\ J$ [up] (1)                                                                               | 2 |      |
|     | -                                                                                                     |   |      |
|     | Show that energy is about 20 000 J                                                                    |   |      |
|     | Energy = $Ivt$ (1)                                                                                    |   |      |
|     | $= 0.3 \text{ A} \times 3.1 \text{ V} \times 6 \times 60 \times 60 \text{ s}$                         |   |      |
|     | $= 20\ 100\ J$ (20 088 J) (1)                                                                         | 2 |      |
|     | Calculation of efficiency                                                                             |   |      |
|     | Efficiency = (stored energy/input energy) $\times$ 100%                                               |   |      |
|     | = $16\ 200\ \text{J}$ [allow ecf from $3^{\text{rd}}$ part] (1)                                       |   |      |
|     | $\div 20088 \text{ J}$ [allow 20 000 J from 4 <sup>th</sup> part] (1)                                 |   |      |
|     | -20088J [anow 20 000 J from 4 <sup>th</sup> part] (1)<br>× 100%                                       |   |      |
|     |                                                                                                       | 2 |      |
|     | = 80.6% [Accept fractional answers. Allow ecf, but check nos.] (1)                                    | 3 | [10] |
|     |                                                                                                       |   |      |


| 83. | Device                                                   |   |
|-----|----------------------------------------------------------|---|
|     | Potential divider or potentiometer                       | 1 |
|     |                                                          |   |
|     | Voltmeter reading                                        |   |
|     | A 9.0 V (1)                                              |   |
|     | B 0 V (1)                                                | 2 |
|     | Diagram                                                  |   |
|     | Label X two thirds of the way down from A [Allow e.c.f.] | 1 |
|     |                                                          |   |
|     | Explanation                                              |   |
|     | Any 3 points from the following:                         |   |
|     | • lamp in parallel with lowest 1/3 of AB                 |   |
|     | • when resistors in parallel, resistance decreases       |   |
|     | • p.d. across lamp reduced to below 3 V                  |   |
|     | • current divides                                        |   |
|     | • no longer enough current to light lamp                 | 3 |

# 84. <u>Circuit diagram</u>

(Variable) resistor symbol (1)

Voltmeter in parallel with cell/resistor (1)

Ammeter in series [even if R missing] (1)



Maximum power available

Use of P = IV(1)

Any pair of values which round to 1.4 W (1)

2

3

[7]

<u>Analysis of data</u> 1000 W m<sup>-2</sup> P = 1.4 W 100 W m<sup>-2</sup> P = 0.11 W OR at least one further value of P (1) Inspection of ratio [e.g. 100 ÷ 1000, 0.11 ÷ 1.4, 1000 ÷ 1.4] (1) Comment based on candidate's result [e.g. Yes as ratio is similar] (1)

#### <u>Graph</u>

E/V + scale : 2 large squares = 0.05 V (1) Points (1) Straight line good fit (1)  $t/^{\circ}C$  + scale: 1 large square = 10° (1) [No penalty if t vs E]

Determination of mathematical relationship Intercept = 0.640  $\rightarrow$ 0.655 (1) A gradient evaluated (1) = 2.1  $\rightarrow$  2.3  $\times$  10<sup>-3</sup> (1)  $E = -2.2 \times 10^{-3}t + 0.65$  [e.c.f.] (1)

<u>Other axes:</u> Intercept 290  $\rightarrow$  310 (1) Gradient (1) 440  $\rightarrow$  460 (1) t = -450E + 300 (1)

Determination of light power from the sun Attempted evaluation of an *area* (1)  $= 0.13 \rightarrow 0.17 \quad [-1 \text{ if } 10^{-6}]$  (2)  $[0.10 \rightarrow 0.20 \quad (1)]$ Their answer  $\times 4.0 = \dots$  (W) [no u.e.] (1) 4

3

4

4

[20]

85.

|        | Base unit | Derived<br>unit | Base<br>quantity | Derived quantity |
|--------|-----------|-----------------|------------------|------------------|
| Mass   |           |                 | ✓                |                  |
| Charge |           |                 |                  | ✓                |
| Joule  |           | ✓               |                  |                  |
| Ampere | ✓         |                 |                  |                  |
| Volt   |           | ✓               |                  |                  |

#### **86.** Explanation:

As the temperature rises, the resistance decreases (1) As the resistance decreases, so the ammeter reading/current increases (1) [No mention of resistance 0/2] [Current controls temperature  $\rightarrow$  controls *R* is wrong physics – 0/2] [If *T* changes so *R* changes OR vice versa so *I* changes 1 mark only] [Correct static relationship (extremes) 1 mark only]

<u>Reading on milliammeter:</u> At 20 °C R = 1.4 (k $\Omega$ ) (1) Substitute correctly in V = IR i.e. 6 V =  $I \times 1400 \Omega$  (1) [Allow their incorrect R; ignore  $10^{x}$ ] (1) Milliammeter reading = 0.0043 A OR 4.3 mA [no e.c.f.] (1) [Accept 4 mA/4.2 mA]

[5]

5

3

# 87. <u>Current:</u> Conversion, i.e. $0.94 \times 10^{-3} \text{ m s}^{-1}$ (1) Use of $1.6 \times 10^{-19} \text{ C}$ (1) Answer 3.0 A $1.0 \times 10^{29} \text{ m}^{-3} \times 0.20 \times 10^{-6} \text{ m}^2 \times 1.6 \times 10^{-19} \text{ C} \times 0.94 \times 10^{-3} \text{ mm s}^{-1}$ (1) Current = 3.0 A [Accept 2.8 A if $0.9 \times 10^{-3}$ used.] <u>Resistance:</u> Recall $R = \frac{\rho l}{A}$ (1)

[5]

5

PhysicsAndMathsTutor.com

| <u>Substitution</u> :<br>$R = \frac{1.7 \times 10^{-8} \Omega \mathrm{m} \times 4.0 \mathrm{m}}{0.20 \times 10^{-6} \mathrm{m}^2} \qquad (1)$                                                                       |   |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|
| Resistance = $0.34 \Omega$ (1)                                                                                                                                                                                      | 3 |      |
| $\frac{\text{Potential difference:}}{\text{Potential difference} = 3.0 \text{ A} \times 0.34 \Omega}$ $= 1.0 \text{ V} (1.02 \text{ V})$ [Mark for correct substitution of their values or for the answer of 1.0 V] | 1 |      |
| Explanation:<br>(Increasing resistivity) increases resistance (1)<br>Leads to a smaller current (1)                                                                                                                 | 2 |      |
| Comparison:Drift velocity decreases (in second wire)(1)[Allow $V_1/V_2 = I_1/I_2$ ]                                                                                                                                 | 1 |      |
| [Allow e.c.f. answer consistent with their current answer]                                                                                                                                                          |   |      |
| [Resistivity up, current down $\rho$ up, <i>I</i> down / 2 (2 <sup>nd</sup> mark)]                                                                                                                                  |   |      |
| $\rho$ up, <i>i</i> down / 2 (2 mark)]                                                                                                                                                                              |   | [10] |

| 88. | <u>E.m.f.</u><br>Use of intercept mentioned/indicated on graph/when $I = 0$ (1)<br>e.m.f. = 1.5 V (1)                                           |     | 2 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | <u>Use of graph:</u><br>Internal resistance: mention use of gradient/use of numbers/triangle on graph<br>Internal resistance = $0.5 \Omega$ (1) | (1) | 2 |

[Finds *r* and/or *V* by substitution, can score answer mark, but NOT method mark]

$$\left[ \text{Gradient} = \frac{1.5 - 1.0}{1.0} = 0.5 \ \Omega \right]$$
They might write gradient =  $\frac{1.5}{1.0} = 1.5 \ \Omega$  OR gradient =  $\frac{1.5}{1.2}$  - ignore signs  $\left] \frac{\text{Graph:}}{\text{Megative gradient of a straight line starting anywhere}}{\text{Megative gradient of a straight line starting anywhere}}$ (1)

heading for  $(1.0, 2.0[1.9 \rightarrow 2.1])$ /gradient of -1 [Consequent mark] 1 3

|     | Filament lamp: any two ofif the variable resistor is set to zero [NOT, as $R_{VR}$ down](1)the lamp prevents I from becoming too large(1)and overloading/damaging the ammeter(1)bulb acting like a fuse OR prevents short circuit(1)bulb means there is still resistance in circuit(1) | ax 2   | [9]  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| 89. | Completion of circuit:                                                                                                                                                                                                                                                                 |        |      |
|     | Ammeter and voltmeter used [correct symbols required] (1)                                                                                                                                                                                                                              |        |      |
|     | Ammeter in series, voltmeter in parallel (1)                                                                                                                                                                                                                                           |        |      |
|     | [Do not penalise variable resistor in series]                                                                                                                                                                                                                                          | 2      |      |
|     | Explanation of difference voltages:                                                                                                                                                                                                                                                    |        |      |
|     | Any two from:                                                                                                                                                                                                                                                                          |        |      |
|     | • Internal resistance of cell/battery                                                                                                                                                                                                                                                  |        |      |
|     | • When current flows, energy transferred to / lost by internal resistance/heating in                                                                                                                                                                                                   | i cell |      |
|     | • Hence voltage across internal resistance/ "lost volts"                                                                                                                                                                                                                               |        |      |
|     | • Reduced <u>terminal</u> p.d. $/ V = E - Ir / E = V + Ir$                                                                                                                                                                                                                             | 2      |      |
|     | Show that internal resistance is about 0.6 $\Omega$ :<br>R = V/I<br>= (1.5 - 1.25) (1)<br>0.4  A                                                                                                                                                                                       |        |      |
|     | $= 0.63 \Omega$ [No u.e.] (1)                                                                                                                                                                                                                                                          | 2      |      |
|     | Calculation of resistance of bulb:<br>R = V/I (1)<br>= 1.25 V $\div$ 0.4 A<br>= 3.1 $\Omega$ (1)                                                                                                                                                                                       | 2      |      |
|     | Explanation of lower resistance with ohmmeter:<br>Identify lower temperature with ohmmeter (1)                                                                                                                                                                                         |        |      |
|     | Lattice ions'/atoms' vibrations impede electrons (1)                                                                                                                                                                                                                                   |        |      |
|     | [Allow converse argument]                                                                                                                                                                                                                                                              | 2      | [10] |

90. Explanation of why it is a good approximation:Resistance of connecting lead is (very) small

So  $I \times R_{(very) small} = (very)$  small p.d./ $e^{-1}$ s do little work so p.d. small/r small (1) compared with rest of the circuit so p.d. small

(1)

2

1

[10]

| Circumstances where approximation might break down:                   |     |  |  |  |
|-----------------------------------------------------------------------|-----|--|--|--|
| If current is large <b>OR</b> resistance of rest of circuit is small  | (1) |  |  |  |
| [Not high voltage/long lead/thin lead/high resistivity lead/hot lead] |     |  |  |  |

## Calculation:

| Use of $R = \frac{\rho l}{A}$ with A attempted × sectional area | (1) |
|-----------------------------------------------------------------|-----|
| Correct use of 16                                               | (1) |
| Use of $V = IR$                                                 | (1) |
| 0.036 V                                                         | (1) |
|                                                                 | 4   |

91. Number of carriers or electrons per unit volume / per m³ /carrier density/electron density (1)[Not charge density / concentration]Drift velocity OR drift speed OR average/mean/net/overall velocity (1)2[Not just velocity; not speed unless drift] $m^{-3}$  (1) $m^2$  As m s<sup>-1</sup> (1)Multiply and reduce to A (1)3

|     | [Base units not needed]<br>[Mixed units and symbols could get the thi<br>$[mA = m^{-1} loses 1 mark]$<br>Metal: | rd mark]                                           |   |     |
|-----|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---|-----|
|     | M: <i>n</i> large so there is a current                                                                         | n: $n$ in metal <u>much</u> larger (1)             |   |     |
|     | Insulator                                                                                                       |                                                    |   |     |
|     | I: <i>n</i> zero (negligible)/very small so less current (or zero current)                                      | Current in metal is larger (1)                     | 2 |     |
|     | [Ignore anything about v. Allow e.g. elec                                                                       | ctron density for <i>n</i> ]                       | - | [7] |
|     |                                                                                                                 |                                                    |   |     |
| 92. | Use $R = \rho l/A$ OR correct rearrangement OI [Symbols or words]                                               | R plot $R \rightarrow l$ gradient = $\rho / A$ (1) |   |     |
|     | With $A = tw$ (1)                                                                                               |                                                    | 2 |     |
|     | $l = RA/\rho$ [Rearrangement mark symbols or                                                                    | numbers] (1)                                       |   |     |
|     | Use of $A = tw$ (1)                                                                                             |                                                    |   |     |
|     | [Correct physical quantities substituted but                                                                    | ignoring unit errors, powers of 10]                |   |     |
|     | = 110 m                                                                                                         |                                                    |   |     |
|     | [111 m] ( <b>1</b> )                                                                                            |                                                    | 3 |     |
|     | Reduce width/w of strip OR use thinner/t for                                                                    | oil [Not reduce $A$ ; not increase $T, V, I$ ] (1) |   |     |
|     | Smaller $w/t/A$ will be less accurate OR have<br>will be more accurate (1)                                      | e larger error OR larger R                         | 2 |     |
|     | [Increase <i>w</i> or <i>t</i> , could give e.c.f. to increas                                                   | ed accuracy]                                       |   | [7] |

93. 
$$I^{2} R / (\varepsilon I - I^{2} r) / \frac{(\varepsilon - Ir)^{2}}{R}$$
 (1)  

$$I^{2} r / (\varepsilon I - I^{2} r) \frac{(\varepsilon - Ir)^{2}}{R}$$
 (1)  
 $\varepsilon I \quad OR \quad I^{2} R + I^{2} r / \varepsilon^{2} / (R + r)$  (1)  
 $\varepsilon I = I^{2} R + I^{2} r \quad OR \quad (It = I^{2} RT + I^{2} rt / \text{their (ii)} = \text{their (i)} + \text{their (ii)}$  (1)  
Cancel I (OR I and t) and arrange [only if energy equation is correct] (1) 5

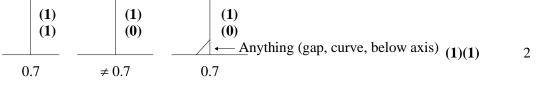
Maximum current occurs when R = 0 (1)

 $I_{\max} = \varepsilon/r$  (1)

OR larger *r* means smaller *I* (**1 mark**)

1 M $\Omega$  [Could be underlined OR circled] (1)

It gives the smallest current (1)


[If  $100 \text{ k}\Omega$  this reason: 1 only]

94. No, because V is not proportional to I OR not straight line through origin /(1)only conducts above 0.5 V / resistance changes

Use of R = 0.74 / current from graph (1)

 $= 9.25 \Omega [9.0 - 9.5 \Omega]$  [Minimum 2 significant figures] (1) 2 Ratio R: ratio V Calculation of Calculation of total  $E = \Sigma IR$  (1) resistance[109 – 115] p.d. across R [8.26]  $\div I$ – diode resistance [9] Correct Correct substitutions substitutions (1)  $103 \Omega$  [100 – 106] (1)

[If not vertical line, 0/2]



[Otherwise **0 0** ]

[8]

2

2

1

[9]

**95.** Potential difference =  $\frac{\text{work/energy}}{\text{charge}}$  OR  $\frac{\text{power}}{\text{current}}$ OR in words: work done in moving 1 coulomb of charge between two points. (1)Unit: volt OR J C<sup>-1</sup> OR V (1)Base units: kg m<sup>2</sup> A<sup>-1</sup> s<sup>-3</sup> (1)(1)(2/2 possible even if final answers wrong for recognising that As = C J = Nm]

#### **96.** Current in motor:

$$I = \frac{P}{V} = 300\ 000\ W/420\ V$$

$$= 714A \ [allow710][no u.e.] (1) 1$$
Problem:
Overheating in wires OR circuit/motor becomes hot
OR Need thick/large/heavy cables
OR other sensible comment (1) 1
Why e.m.f. of battery must be more than 420 V:
Mention of internal resistance (1)
Detail e.g. loss of p.d. inside battery when current delivered/ lost volts (1)
OR equations used correctly 2 marks 2
Overall efficiency of motor:
K.E. gained =  $\frac{1}{2} m v^2$ 

$$= \frac{1}{2} \times 1160 \times 107\ ^2 J$$

$$= 300\ 000 \times 100\ J$$

$$= 30\ M\ J\ (1)$$

$$\Rightarrow efficiency = out/in \times 100$$

$$= 6.64/30 \times 100\ =22\%\ (1)$$

[4]

|     | Reasons for energy losses: (1)                                                                                                        |       |     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
|     | Work (done) against air resistance (1)                                                                                                |       |     |
|     | Work (done) against friction (1)                                                                                                      |       |     |
|     | Heating in wires of circuit (1)                                                                                                       |       |     |
|     |                                                                                                                                       |       |     |
|     | Heating, in battery (1)                                                                                                               | M     |     |
|     | Heating in motor coils (1)                                                                                                            | Max 2 |     |
|     | OR other sensible comments e.g. sound                                                                                                 |       |     |
|     | [Friction or heat loss scores zero unless detailed e.g. heat due to friction/air                                                      |       |     |
|     | resistance $$ but heat to surroundings $\times$ ]                                                                                     |       | [0] |
|     |                                                                                                                                       |       | [9] |
|     |                                                                                                                                       |       |     |
| 97. | Why resistance changes:                                                                                                               |       |     |
|     | Wire lengthens OR cross–sectional area OR diameter reduces (1)                                                                        |       |     |
|     | Use of $R = \rho l/A$ to explain [R and l, $R \propto 1/A$ (1)                                                                        | 2     |     |
|     | Advantage:                                                                                                                            | -     |     |
|     | A long length of wire OR small area OR multiple stretching (1)                                                                        | 1     |     |
|     |                                                                                                                                       | 1     |     |
|     | Diagram:                                                                                                                              |       |     |
|     | Circuit with ammeter in series (1) voltmeter in parallel (with strain gauge) (1)                                                      |       |     |
|     | OR multimeter across strain gauge (1)(1)<br>[Multimeter with power supply – 1 only]                                                   | Max 2 |     |
|     | Resistance:                                                                                                                           |       |     |
|     | $R = \rho l / A$                                                                                                                      |       |     |
|     | = $4.9 \times 10^{-7} \Omega \text{ m} \times 0.2 \text{ m/}\pi \times (2 \times 10^{-4} \text{ m}/2)^2$ (1)<br>[i.e. area = (1)] (1) |       |     |
|     | $= 3.1\Omega$ (1)                                                                                                                     | 3     |     |
|     |                                                                                                                                       |       | [8] |

## **98.** Threshold wave:

Electron requires certain amount of energy to escape from surface (1) This energy somes from one photon (1)

This energy comes from one photon (1)

Use of E = hf(1)

(So photon needs) minimum frequency (1)

Hence maximum wavelength

OR use of 
$$E = hc/\lambda$$
 (1)

Max 4

Max 2

1

Work function:

$$f = c/\lambda = 3.0 \times 10^8 / 700 \times 10^{-9} \text{ m (1)}$$
  
= 4.28 × 10<sup>-14</sup> Hz (1)  
$$E = hf = 6.63 \times 10^{-34} \text{ J s} \times 4.28 \times 10^{-14} \text{ Hz} = 2.84 \times 10^{-19} \text{ (J) [Allow e.c.f.] (1)}$$

Circuit :

Circuit showing resistors only in series (1)

Potentials labelled (1) [Use of potential divider – allowed] Resistor values 1: 1: 1 OR 1:2 (1)

Suggestion:

Cosmic rays travel more slowly than light (1)

[10]

#### **99.** Definition of symbols:

n = number of electrons/carriers per unit volume (per m<sup>3</sup>) OR electron (or carrier) density (1)

| Ratio             | Value | Explanation                                                                                                         |  |
|-------------------|-------|---------------------------------------------------------------------------------------------------------------------|--|
| $\frac{n_y}{n_x}$ | 1     | Same material (1) (1)                                                                                               |  |
| $\frac{l_y}{l_x}$ | 1     | Connected in series/Kirchoff's 1 <sup>st</sup> law/conservation of charge/current is the same (1) (1)               |  |
| $\frac{v_y}{v_x}$ | 2     | A is halved so $v$ double<br>[Accept qualitative, e.g. $A \downarrow$ so $v \uparrow$ , or good<br>analogy] (1) (1) |  |

v = average (OR drift) velocity (OR speed) (1)

6

2

[Accept e.g. ny = nx....]

[No e.c.f]

[NB Mark value first, without looking at explanation. If value correct, mark explanation. If value wrong, don't mark explanation *except*: if  $v_y/v_x = \frac{1}{2}$  or 1:2, see if explanation is correct physics, and if so give (1). No e.c.f.]

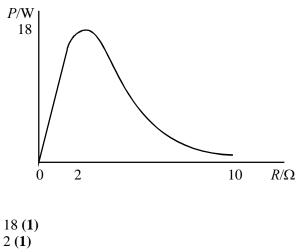
[8]

**100.** Demonstration that resistance is  $0.085 \Omega$ :

$$R = \rho l/A (1)$$
  
= 1.7 ×10<sup>-8</sup> Ωm ×20 m / (4.0 ×10<sup>-6</sup> m<sup>2</sup>) (1) 2

Calculation of voltage drop:

V = 
$$37 \text{ A} \times 0.085 \Omega$$
 (1)  
=  $3.1 \text{ V} \times 2 = 6.3 \text{ V}$  [Not if  $V_{\text{shower}}$  then found] (1) 2


[Only one conductor, leading to 3.1 V, gets 1<sup>st</sup> mark] [Nothing if wires in parallel]

# Explanation:

|      | Lower resistance/ $R = 0.057 \Omega$ /less voltage drop/new $V = \frac{2}{3}$ old $V$ (1)<br>Power dissipated in cable/energy wasted/wire not so hot<br>OR more p.d/current/power to shower<br>OR system more efficient (1) | 2 | [6] |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| 101. | Explanation: .<br>I = E/r + R (1)                                                                                                                                                                                           | 1 |     |
|      | Appropriate formula for cell E9:<br>C9 * D9 OR <i>RI</i> OR 1 $\Omega \times 4$ A (1)                                                                                                                                       | 1 |     |
|      | Appropriate formula for cell F 11<br>D11 *E11 OR <i>VI</i> OR 3A × 6V OR C11 * D11 *D11<br>OR <i>RI</i> <sup>2</sup> OR 2 $\Omega \times (3 \text{ A})^2$ (1)                                                               | 1 |     |
|      | Short circuit current:<br>6 A (1)                                                                                                                                                                                           | 1 |     |
|      | Explanation:                                                                                                                                                                                                                |   |     |
|      | r and R in series $\rightarrow$ potential division (1)                                                                                                                                                                      | 1 |     |

| r and R in series $\rightarrow$ potential division (1)                            |
|-----------------------------------------------------------------------------------|
| as $R \uparrow$ , <i>r</i> constant $\rightarrow R$ has greater share of 12 V (1) |
| OR other valid argument                                                           |

Sketch graph of power against resistance:



Shape including asymptote (1)

3

1

Comment:

Maximum when R = r (1) in accordance with maximum power theorem (1) OR  $P \rightarrow 0$  as  $R \rightarrow \infty$  (1)

Max 2

[11]

## **102.** (a) Mark the method *before* marking the circuit

| Suitable circuit                 | Ţ                               | A<br>V                                               |                                    | Short circuit<br>option                            |
|----------------------------------|---------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------|
| What is measured                 | Set of readings<br>of V and I   | V and I                                              | Two sets of <i>V</i> and <i>I</i>  | V and I                                            |
| What is then done                | Plot V against I                | Record V for open circuit                            | Substitute in $V = E - Ir$         | Record V for open circuit                          |
| Finding <i>E</i><br>and <i>r</i> | E = intercept<br>r = - gradient | E = open<br>circuit<br>voltage<br>r from<br>V = E-Ir | Solve<br>simultaneous<br>equations | <i>E</i> =open circuit<br>voltage r from<br>r=E-Ir |

| Suitable circuit    | R                           | R                           |                              | Potentiometer               |
|---------------------|-----------------------------|-----------------------------|------------------------------|-----------------------------|
| What is measured    | <i>V</i> for known <i>R</i> | <i>I</i> for known <i>R</i> | Two sets of $I$ and $R$      | <i>l</i> for known <i>R</i> |
| What is then done   | Record V for open circuit   | Record V for open circuit   | Substitute in $E = I(R + r)$ | <i>l'</i> for open circuit  |
| Finding $E$ and $r$ | E = open                    | E = open                    | Solve                        | <i>E</i> from <i>l</i> '    |

-

| circuit volta<br>from<br>E/V = (R + V) | voltage<br>r from | simultaneous<br>equations | (calibrated)<br>$\frac{l'}{l} = \frac{(R+r)}{R}$ |
|----------------------------------------|-------------------|---------------------------|--------------------------------------------------|
| r)/R                                   | E = I(R + r)      |                           |                                                  |

Mark other procedures in a similar way

[Mark text, then tick for circuit if it does the job described.

If diagram *alone*, ask if it can do the job and give mark if yes]

- (b)
   (i) p.d. across battery:

   V = E Ir 

   =
   12.0 V 3.0 A × 3.0  $\Omega$  (substitution)

   =
   3.0 V

   (ii)
   Straight line from (0,12) to (3,3) (e.c.f.)

   1

   Current:
   2.05 to 2.10 A
  - [Allow correct intersection of their line (ignore shape),  $\pm 0.05$  A, of the characteristic with their graph, even if theirs is wrong. A line MUST be drawn for the last mark.]
- **103.** Explanation of variation shown on the graph:

More electrons set free. Any one from: as temperature increases; thermal energy/vibration increases/ resistance decreases/current increases

2

#### Resistance of thermistor:

V (across thermistor) = 1.20 V Resistance ratio = voltage ratio  $R = 495 \Omega$ 

or

 $I = 0.80 \text{ V}/330 \Omega \text{ (substitution)}$ = 0.002424 A V across thermistor = 1.20 VR = 1.20 V/0.002424 A= 495  $\Omega$ 

or

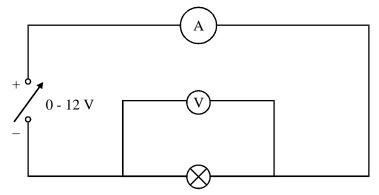
 $I = 0.80 \text{ V}/330 \Omega$ = 0.002424 A  $R_{\text{(total)}} = 2.0 \text{ V}/0.002424 \text{ A}$ = 825  $\Omega$  $R = 825 \Omega - 330 \Omega$ = 495  $\Omega$ 

3

#### Explanation:

 Thermistor resistance low

 Why: thermistor hotter/more current, power, charge carriers

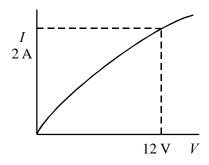

 Why v. small: thermistor takes smaller <u>fraction</u> of p.d. or <u>ratio</u> of p.d.

 3

**104.** Completion of a correct circuit diagram:

Ammeter in series with lamp and supply [Ignore voltmeter position]

Voltmeter across lamp and ammeter [and maybe with ammeter




Measurements:

Record voltmeter reading

Record corresponding ammeter reading ["corresponding" may be implied]

Repeat for range of supply voltage settings [or currents] Labelled sketch:



Label axes *I* and *V* [with or without units] Graph line with correct curvature [overlook any tendency of the current value to saturate]

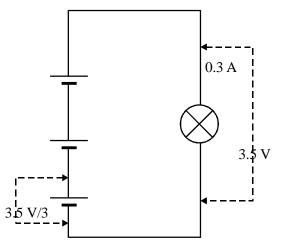
Show 12 V, 2 A correctly [Allow 12 and 2 if units are labelled on axes]

[The second mark is lost if axes are not labelled, unless 2 A and 12 V are present, with the units, to make sense of the axes.]

#### **105.** Diagram of torch circuit:

The lamp will light

Correct circuit


2

3

[8]

3

[Circuit showing one cell only is allowed one mark only unless the cell is labelled 4.5 V. If a resistor is included, allow first mark only unless it is clearly labelled in some way as an internal resistance.]



Voltage across each circuit component and current in lamp: Either 3.5 V/3 shown across the terminals of one cell or 3.5 V across all three cells 3.5 V shown to be across the lamp 0.3 A flowing in the lamp [i.e. an isolated 0.3 A near the lamp does not score]

Calculation of internal resistance of one of the cells:

Lost volts = 4.5 V - 3.5 V or 1.5 V -  $\frac{3.5 V}{3}$ or total resistance = (4.5 V)/0.3 A) = 15 K $\Omega$ 

Internal resistance of one cell =  $[(1.0 \text{ V})/(0.3 \text{ A})] \div 3$ 

 $or [(0.33 \text{ V}) (0.3 \text{ A})] or \text{ lamp resistance} = (3.5 \text{ V}) / (0.3 \text{ A})11.7 \Omega$ = 1.1  $\Omega or = (3.3\Omega)/3 = 1.1 \Omega$  3

[Some of these latter marks can be read from the diagram if it is so labelled]

[8]